scholarly journals NKX2-1 re-expression induces cell death through apoptosis and necrosis in dedifferentiated thyroid carcinoma cells

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259558
Author(s):  
Yuko Ito ◽  
Fumihiko Furuya ◽  
Katsumi Taki ◽  
Hideaki Suzuki ◽  
Hiroki Shimura

NK2 homeobox 1 (NKX2-1) is a thyroid transcription factor essential for proper thyroid formation and maintaining its physiological function. In thyroid cancer, NKX2-1 expression decreases in parallel with declined differentiation. However, the molecular pathways and mechanisms connecting NKX2-1 to thyroid cancer phenotypes are largely unknown. This study aimed to examine the effects of NKX2-1 re-expression on dedifferentiated thyroid cancer cell death and explore the underlying mechanisms. A human papillary thyroid carcinoma cell line lacking NKX2-1 expression was infected with an adenoviral vector containing Nkx2-1. Cell viability decreased after Nkx2-1 transduction and apoptosis and necrosis were detected. Arginase 2 (ARG2), regulator of G protein signaling 4 (RGS4), and RGS5 mRNA expression was greatly increased in Nkx2-1-transducted cells. After suppressing these genes by siRNA, cell death, apoptosis, and necrosis decreased in RGS4 knockdown cells. These findings demonstrated that cell death was induced via apoptosis and necrosis by NKX2-1 re-expression and involves RGS4.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhifeng Li ◽  
Fujin Wang ◽  
Yinxing Zhu ◽  
Ting Guo ◽  
Mei Lin

Breast cancer (BRCA) has severely threatened women’s health worldwide. Radiotherapy is a treatment for BRCA, which applies high doses of ionizing radiation to induce cancer cell death and reduce disease recurrence. Radioresistance is one of the most important elements that affect the therapeutic efficacy of radiotherapy. Long noncoding RNAs (lncRNAs) are suggested to dominate crucial roles in regulating the biological behavior of BRCA. Currently, some studies indicate that overexpression or inhibition of lncRNAs can greatly alter the radioresistance of BRCA. In this review, we summarized the knowledge on the classification and function of lncRNAs and the molecular mechanism of BRCA radioresistance, listed lncRNAs related to the BRCA radioresistance, highlighted their underlying mechanisms, and discussed the potential application of these lncRNAs in regulating BRCA radioresistance.


2020 ◽  
Vol 20 (15) ◽  
pp. 1831-1844 ◽  
Author(s):  
Giftson J. Senapathy ◽  
Blassan P. George ◽  
Heidi Abrahamse

Background: Cancer is still considered a deadly disease worldwide due to difficulties in diagnosis, painful treatment procedures, costly therapies, side effects, and cancer relapse. Cancer treatments using conventional methods like chemotherapy and radiotherapy were not convincing due to its post-treatment toxicity in the host. In Photodynamic Therapy (PDT), three individual non-toxic components including a photosensitizer, light source and oxygen cause damage to the cells and tissues when they are combined. Objective: In recent years, phytochemicals are being increasingly recognized as potent complementary drugs for cancer because of its natural availability, less toxicity and therapeutic efficiency in par with commercial drugs. Hence, the idea of using phytochemicals as natural photosensitizers in PDT resulted in a multiple pool of research studies with promising results in preclinical and clinical investigations. Methods: In this review, the potential of phytochemicals to act as natural photosensitizers for PDT, their mode of action, drawbacks, challenges and possible solutions are discussed in detail. Results: In PDT, natural photosensitizers, when used alone or in combination with other photosensitizers, induced cell death by apoptosis and necrosis, increased oxidative stress, altered cancer cell death signaling pathways, increased cytotoxicity and DNA damage in cancer cells. The pro-oxidant nature of certain antioxidant polyphenols, hormesis phenomenon, Warburg effect and DNA damaging potential plays a significant role in the photosensitizing mechanism of phytochemicals in PDT. Conclusion: This review explores the role of phytochemicals that can act as photosensitizers alone or in combination with PDT and its mechanism of action on different cancers.


2016 ◽  
Vol 23 (15) ◽  
pp. 1513-1527 ◽  
Author(s):  
Magdalena Gorska ◽  
Alicja Kuban-Jankowska ◽  
Jaroslaw Slawek ◽  
Michal Wozniak

2019 ◽  
Vol 234 (11) ◽  
pp. 20648-20661 ◽  
Author(s):  
Zhen Yu ◽  
Ze Yu ◽  
ZhenBao Chen ◽  
Lin Yang ◽  
MingJun Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document