scholarly journals A Gammaherpesvirus Bcl-2 Ortholog Blocks B Cell Receptor-Mediated Apoptosis and Promotes the Survival of Developing B Cells In Vivo

2014 ◽  
Vol 10 (2) ◽  
pp. e1003916 ◽  
Author(s):  
Carrie B. Coleman ◽  
Jennifer E. McGraw ◽  
Emily R. Feldman ◽  
Alexa N. Roth ◽  
Lisa R. Keyes ◽  
...  
Keyword(s):  
B Cells ◽  
B Cell ◽  
Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2903-2903
Author(s):  
Y. Lynn Wang ◽  
Shuhua Cheng ◽  
Jiao Ma ◽  
Ailin Guo ◽  
Pin Lu ◽  
...  

Abstract Abstract 2903 Purpose: Bruton tyrosine kinase (BTK) is a component of the B-cell receptor signaling pathway. Ibrutinib (previously known as PCI-32765), a first in class, covalent BTK inhibitor, has demonstrated significant clinical activity against CLL in early clinical trials. Understanding the molecular mechanisms of action would shed light on CLL pathophysiology and provide additional opportunities for the development of new therapies. Experimental Design: The anti-tumor activity of ibrutinib in CLL has been investigated previously using either an ex vivo approach or a mouse model (Herman et.al, Blood. 2011;117:6287–96 and Ponader et.al, Blood. 2012;119:1182–9). In this study, we have chosen, instead, a patient-oriented in vivo approach by using samples from an ongoing phase 1b trial of ibrutinib (NCT01105247). We prospectively collected serial samples from CLL patients (n=14) before and at several time points after the initiation of therapy and analyzed them for cellular and molecular signaling events. Results: We demonstrated that levels of the phosphorylated BTK protein (p-BTK) in CLL cells from treatment-naïve patients were significantly higher than in normal B cells, explaining why CLL cells are more susceptible to BCR inhibition than normal B cells. Response assessments, performed at the end of cycle 2 (∼Day 56), demonstrated nodal responses in all patients by CT scan. Ex vivo apoptosis did occur but required high concentrations of ibrutinib (>500 nM). In addition, in vivo apoptosis was rarely observed in serial peripheral blood samples collected from treated patients. With these serial samples, we found that the population of Ki67+ cells were gradually decreased over a 28-day ibrutinib treatment course. Using a newly established co-culture system that induces CLL proliferation in vitro, the analysis of several parameters, including Ki-67 expression, cell growth and bromodeoxyuridine (BrdU) incorporation (shown in the figure), revealed that the proliferation of CLL cells was directly inhibited by ibrutinib (200 nM). Furthermore, activities of BTK and downstream signaling events, such as the phosphorylation of PLCg2, AKT and ERK, were all suppressed over time in ibrutinib-treated patients. Conclusions: With primarily an in vivo approach, we have demonstrated that the blockage of cell proliferation was a major effect of ibrutinib against leukemic CLL cells. Blocking cell proliferation via inhibition of BTK-mediated signaling concurs with clinical responses in ibrutinib-treated CLL patients. Disclosures: Leonard: Pharmacyclics Inc.: Consultancy, Honoraria. Buggy:Pharmacyclics: Employment, Equity Ownership.


2004 ◽  
Vol 199 (6) ◽  
pp. 855-865 ◽  
Author(s):  
Amy Reichlin ◽  
Anna Gazumyan ◽  
Hitoshi Nagaoka ◽  
Kathrin H. Kirsch ◽  
Manfred Kraus ◽  
...  

B cell receptor (BCR) signaling is mediated through immunoglobulin (Ig)α and Igβ a membrane-bound heterodimer. Igα and Igβ are redundant in their ability to support early B cell development, but their roles in mature B cells have not been defined. To examine the function of Igα–Igβ in mature B cells in vivo we exchanged the cytoplasmic domain of Igα for the cytoplasmic domain of Igβ by gene targeting (Igβc→αc mice). Igβc→αc B cells had lower levels of surface IgM and higher levels of BCR internalization than wild-type B cells. The mutant B cells were able to complete all stages of development and were long lived, but failed to differentiate into B1a cells. In addition, Igβc→αc B cells showed decreased proliferative and Ca2+ responses to BCR stimulation in vitro, and were anergic to T-independent and -dependent antigens in vivo.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1567-1567
Author(s):  
Nicola J Weston-Bell ◽  
Gavin Babbage ◽  
Francesco Forconi ◽  
Hanneke C. Kluin-Nelemans ◽  
Surinder S Sahota

Abstract Abstract 1567 The B-cell receptor (BCR) is critical to survival of normal B-cells, and regulates key aspects of cellular behavior. Of these, response to antigen determines pathways of normal B-cell maturation, including isotype switch events that occur by deletional class switch recombination (CSR), an irrevocable event, to yield IgG/A memory B-cells. Less frequently, CSR via a cryptic site generates IgD+ B-cells whereas IgM+IgD+ antigen experienced B-cells synthesize each isotype by an alternative transcript splicing mechanism. The role of the BCR in survival of malignant B-cells however is less well defined, in particular in response to antigen. Intriguingly, in Hairy cell leukemia (HCL), BCR assembly occurs with multiple surface immunoglobulin (sIg) isotypes (mult-HCL), many co-expressed on individual hairy cells (HCs) in an otherwise monoclonal tumor. Multiple isotypes appear to exclude deletional CSR events, and suggests a RNA processing mechanism of molecular assembly. This phenotype is rare even amongst malignant B-cells, and raises the question of the functional relevance of individual variant isotypes. It also potentially presents a model to dissect roles of multiple isotypes on single B-cells. To examine this, we investigated the BCR in CD19+CD11c+CD103+ mult-HCL cases (n=10), in which 2–4 differing sIg isotypes were present on most HCs, with single or, in 3 cases, dual sIgL expression. In all cases, IGHV genes were mutated, and confirmed monoclonality. Phenotype revealed 2 distinct subsets by sIg isotype co-expression, IgD+ve and IgD-ve. Using Ca2+ flux and ERK phosphorylation assays after cross-linking with specific anti-sIg antibodies, we observed a functional BCR in all mult-HCL examined, in both subsets (10/10 cases Ca2+, 6/6 cases ERK). However, striking differences emerged between the two subsets. In sIgD+ve mult-HCL, IgD mediated persistent Ca2+ flux, with flux also evident via >1 sIgH isotype. In marked contrast, in sIgD-ve mult-HCL Ca2+ flux was restricted to a single sIgH isotype, but not via IgM. Flux signals in this subset were transient. In most cases only a single sIgL transduced flux. We next evaluated BCR endocytosis after cross-linking individual isotypes and IgL. In 2 sIgD+ve cases, anti-IgD and anti-Igλ stimulation led to endocytosis of both sIgD and sIgλ, and in 1 case, where examined, anti-IgM stimulation endocytosed both sIgM and sIgλ. In 3 sIgD-ve cases, functional sIgH and sIgL induced endocytosis of the stimulated isotype, but again sIgM was dysfunctional, remaining immobilized on the cell surface. Ca2+ flux through endocytosed isotypes was correspondingly either significantly reduced or ablated in both subsets. In HCs, BCR endocytosis is clearly dependent on functional isotypes and IgL, and parallels events in normal B-cells. Lastly, we examined downstream effects of BCR signalling on cell viability, using soluble (sAb) and bound (bAb) anti-sIg antibodies. In a single IgD+ve mult-HCL case, both sAb and bAb anti-IgM yielded a significant level of apoptosis compared to control antibodies, whereas anti-IgD sAb resulted in no appreciable difference to level of spontaneous apoptosis, suggesting a disengagement of signals from this pathway. This disengagement was also observed in a separate HCL case expressing only IgD, and not in the mult-HCL cohort initially selected, where anti-IgD signals again did not increase levels of apoptosis. In IgD-ve mult-HCL (n=4), sAb and bAb specific cross-linking of IgG/A triggered significant apoptosis. These data demonstrate, for the first time, that mult-HCL retains a functional responsiveness via the BCR, suggesting an absence of anergic effects that may follow chronic antigen exposure in-vivo to self-antigen. Signals via sIgM/G/A isotypes, where functional, induce apoptosis in mult-HCL, whereas sIgD opposes such effects. Despite an apparently unique molecular mechanism of IgD expression in mult-HCL, this isotype appears to be hardwired in B-cells to mediate responses that differ from IgM. The persistent flux observed here indicates a more sustained and robust IgD signaling cascade, as also observed in B-cell models. These data reveal distinctive and opposing effects of individual isotypes on BCR mediated behavior in mult-HCL. While apoptotic responses appear to negate a role for antigen in tumor drive in-vivo, potential antigen engagement via IgD, if dominant leaves this question open. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 116 (51) ◽  
pp. 25850-25859 ◽  
Author(s):  
Peter Csaba Huszthy ◽  
Ramakrishna Prabhu Gopalakrishnan ◽  
Johanne Tracey Jacobsen ◽  
Ole Audun Werner Haabeth ◽  
Geir Åge Løset ◽  
...  

The B cell receptors (BCRs) for antigen express variable (V) regions that are enormously diverse, thus serving as markers on individual B cells. V region-derived idiotypic (Id) peptides can be displayed as pId:MHCII complexes on B cells for recognition by CD4+T cells. It is not known if naive B cells spontaneously display pId:MHCII in vivo or if BCR ligation is required for expression, thereby enabling collaboration between Id+B cells and Id-specific T cells. Here, using a mouse model, we show that naive B cells do not express readily detectable levels of pId:MHCII. However, BCR ligation by Ag dramatically increases physical display of pId:MHCII, leading to activation of Id-specific CD4+T cells, extrafollicular T–B cell collaboration and some germinal center formation, and production of Id+IgG. Besides having implications for immune regulation, the results may explain how persistent activation of self-reactive B cells induces the development of autoimmune diseases and B cell lymphomas.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 15-15
Author(s):  
Daniel Trageser ◽  
Cihangir Duy ◽  
Lars Klemm ◽  
Tanja Gruber ◽  
Rahul Nahar ◽  
...  

Abstract Pre-B cells within the bone marrow are destined to die unless they are rescued through survival signals from the pre-B cell receptor. Studying the configuration of the immunoglobulin heavy chain locus (IGHM) in sorted human bone marrow pre-B cells by single-cell PCR, we detected a functional IGHM allele consistent with the expression of a functional pre-B cell receptor in the vast majority of normal human pre-B cells. However, only in 10 of 57 cases of BCR-ABL1-transformed pre-B cell-derived acute lymphoblastic leukemia (ALL), we detected a functional IGHM allele. While normal pre-B cells respond vigorously to pre-B cell receptor engagement by Ca2+ release, the pre-B cell receptor was unresponsive even in the few cases of BCR-ABL1-driven ALL, in which we amplified a productively rearranged IGHM allele. For this reason, we studied the function of the pre-B cell receptor during early B cell development and progressive transformation in a BCR-ABL1-transgenic mouse model: Interestingly, BCR-ABL1-transgenic mice that have not yet undergone leukemic transformation show almost normal pre-B cell receptor selection. In these pre-leukemic pre-B cells, however, expression of the BCR-ABL1-transgene is very low as compared to full-blown ALL, suggesting that high levels of BCR-ABL1 expression are not compatible with normal expression of the pre-B cell receptor. Consistent with our observations in human ALL, full-blown ALL clones in BCR-ABL1-transgenic mice show defective pre-B cell receptor selection and the pre-B cell receptors expressed on few leukemic cells are not functional. Treatment of leukemic mice with the BCR-ABL1 kinase inhibitor AMN107, however, reinstated normal pre-B cell receptor selection and pre-B cell receptor function within seven days. These data suggest that the transforming signal through BCR-ABL1 and normal survival signals through the pre-B cell receptor are mutually exclusive. To test whether functional pre-B cell receptor signaling prevents transformation by BCR-ABL1, we transformed murine pre-B cells carrying a deletion of the SLP65 gene, which is required for functional pre-B cell receptor signaling. Unlike SLP65-wildtype pre-B cells, SLP65−/− pre-B cells can be transformed by BCR-ABL1 at a high efficiency. Reconstitution of SLP65 using a retroviral vector, however, induced rapid cell death of BCR-ABL1-transformed pre-B cells. We next investigated the potential impact of Slp65-reconstitution on leukemic growth of BCR-ABL1-transformed pre-B cells from SLP65−/− mice in vivo. To this end, SLP65−/− BCR-ABL1-transformed pre-B cells were labeled with firefly-luciferase and then transduced with retroviral vectors encoding SLP65/GFP or GFP alone. NOD/SCID mice were sublethally irradiated and injected with either SLP65/GFP+ or GFP+ ALL cells. Engraftment as monitored by bioluminescence imaging was delayed by more than three weeks in mice injected with SLP65/GFP+ ALL cells as compared to mice injected with GFP+ ALL cells. 36 days after injection, the first mice that were inoculated with GFP-transduced leukemia cells, became terminally ill and also the other mice in this group showed weight loss at that time. In contrast, the mice injected with SLP65-GFP-transduced ALL cells showed no signs of disease and no significant weight loss. At this time, all mice were sacrificed: Whereas mice injected with GFP-transduced ALL cells showed splenomegalia and leukemic infiltration into multiple organs, there was only mild splenic enlargement, when SLP65-reconstituted ALL cells were injected. Reconstitution of SLP65 also reduced the frequency of BCR-ABL1-transformed leukemia cells about 15-fold in the bone marrow, 5-fold in the spleen and >100-fold in the peripheral blood. We conclude that deficiency of the pre-B cell receptor-related signaling molecule SLP65 not only represents a frequent feature in human ALL cells but also represents a critical requirement for BCR-ABL1-driven leukemic growth in vivo. We conclude that pre-B cell receptor signaling renders B cell progenitor cells non-permissive to BCR-ABL1-mediated transformation. Only crippled pre-B cells with a non-functional pre-B cell receptor are susceptible to BCR-ABL1-mediated transformation.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. SCI-25-SCI-25
Author(s):  
Freda K. Stevenson ◽  
Serge Krysov ◽  
Alex Paterson ◽  
Vania Coelho ◽  
Andrew Steele ◽  
...  

Abstract Abstract SCI-25 The B-cell receptor (BCR) is a flexible and variable environmental sensor with no fixed ligand. The central component is surface Ig (sIg), which appears to function at several levels, mediating a “tonic” signal essential for survival and also binding to antigens via its variable (V) regions. Expression of sIg and reliance on BCR signals generally persist in neoplastic B cells. Indolent tumors, including chronic lymphocytic leukemia (CLL), allow insight into the pathogenetic role of the BCR prior to therapy as well as revealing key proteins within these pathways for drug targeting. CLL is heterogeneous, arising at two points of differentiation, generating two major subsets, one with unmutated Ig V genes (U-CLL), another with mutated Ig V genes (M-CLL). U-CLL appears to develop from naïve B cells of the natural antibody repertoire aimed against common pathogens. The clinical behavior of the two subsets differs, with U-CLL being of poorer prognosis. Evidence for antigen drive on both subsets comes from detecting “endocytosis in vivo,” whereby sIgM expression and signal capacity in blood cells are variably downmodulated, but can recover in vitro. Mysteriously, sIgD of the same presumed antigen specificity shows no evidence for endocytic downmodulation in vivo. CLL cells apparently engage antigens via sIgM in tissue sites, leading to proliferation and downmodulation, with reexpression gradually occurring during transit through the blood. Expression of CXCR4 closely follows that of sIgM, and clonal analysis reveals subpopulations of potentially dangerous cells with high sIgM/CXCR4 primed for tissue-based proliferative stimulation. In contrast to normal B cells, this is an iterative process exposing the proliferating CLL cells to further genetic changes. Overall higher sIgM levels and increased signal capacity in U-CLL likely account for more aggressive clinical behavior. BCR-induced membrane-proximal events include LYN-mediated phosphorylation of Iga/b followed by recruitment of the tyrosine kinase Syk. Signal propagation then involves Btk and PLCg2. LYN-dependent phosphorylation of CD19 also recruits the p85 subunit of PI3K, a known survival mechanism in CLL. Downstream events include upregulation of MYC proto-oncoprotein expression and induction of MYC-regulated target genes such as cyclin D2, with both proteins detected in proliferation centers. Pathways to increased cell survival include induction of the antiapoptotic MCL1 protein and inactivation of the proapoptotic activity of BIM(EL/L) via enhanced phosphorylation. The ability to phosphorylate BIM(EL) was highly correlated with mutational status and with requirement for treatment. While these events delineate BCR-activated pathways, they provide only the skeleton. sIgM signaling is highly dependent on the polymeric nature of the antigen, with responses to solid-phase stimulus producing a higher and more prolonged signal than the soluble form. Clearly, CLL cells have to integrate BCR signals with those from other receptors for the multitude of microenvironmental factors. This is a two-way process, since BCR signals operate “inside-out” by modulating the expression of molecules involved in migration and adhesion. The fact that the glycan composition of sIgM is also modulated to a mannosylated form, potentially able to bind to mannose-binding lectins, could contribute to the latter. Clinical effects of Syk, Btk and PI3Kd inhibitors, known to affect BCR signaling and potentially other pathways, are both explicable and exciting. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 203 (7) ◽  
pp. 1785-1794 ◽  
Author(s):  
Anna Gazumyan ◽  
Amy Reichlin ◽  
Michel C. Nussenzweig

Immunoglobulin (Ig)α and Igβ initiate B cell receptor (BCR) signaling through immune receptor tyrosine activation motifs (ITAMs) that are targets of SH2 domain–containing kinases. To examine the function of Igβ ITAM tyrosine resides in mature B cells in vivo, we exchanged these residues for alanine by gene targeting (IgβAA). Mutant mice showed normal development of all B cell subtypes with the exception of B1 cells that were reduced by fivefold. However, primary B cells purified from IgβAA mice showed significantly decreased steady-state and ligand-mediated BCR internalization and higher levels of cell surface IgM and IgD. BCR cross-linking resulted in decreased Src and Syk activation but paradoxically enhanced and prolonged BCR signaling, as measured by cellular tyrosine phosphorylation, Ca++ flux, AKT, and ERK activation. In addition, B cells with the ITAM mutant receptor showed an enhanced response to a T-independent antigen. Thus, Igβ ITAM tyrosines help set BCR signaling threshold by regulating receptor internalization.


Blood ◽  
2011 ◽  
Vol 118 (16) ◽  
pp. 4313-4320 ◽  
Author(s):  
Freda K. Stevenson ◽  
Sergey Krysov ◽  
Andrew J. Davies ◽  
Andrew J. Steele ◽  
Graham Packham

Abstract The B-cell receptor (BCR) is a key survival molecule for normal B cells and for most B-cell malignancies. Recombinatorial and mutational patterns in the clonal immunoglobulin (Ig) of chronic lymphocytic leukemia (CLL) have revealed 2 major IgMD-expressing subsets and an isotype-switched variant, each developing from distinct B-cell populations. Tracking of conserved stereotypic features of Ig variable regions characteristic of U-CLL indicate circulating naive B cells as the likely cells of origin. In CLL, engagement of the BCR by antigen occurs in vivo, leading to down-regulated expression and to an unanticipated modulation of glycosylation of surface IgM, visible in blood cells, especially in U-CLL. Modulated glycoforms of sIgM are signal competent and could bind to environmental lectins. U-CLL cases express more sIgM and have increased signal competence, linking differential signaling responses to clinical behavior. Mapping of BCR signaling pathways identifies targets for blockade, aimed to deprive CLL cells of survival and proliferative signals. New inhibitors of BCR signaling appear to have clinical activity. In this Perspective, we discuss the functional significance of the BCR in CLL, and we describe strategies to target BCR signaling as an emerging therapeutic approach.


2007 ◽  
Vol 204 (4) ◽  
pp. 747-758 ◽  
Author(s):  
Ari Waisman ◽  
Manfred Kraus ◽  
Jane Seagal ◽  
Snigdha Ghosh ◽  
Doron Melamed ◽  
...  

We describe a mouse strain in which B cell development relies either on the expression of membrane-bound immunoglobulin (Ig) γ1 or μ heavy chains. Progenitor cells expressing γ1 chains from the beginning generate a peripheral B cell compartment of normal size with all subsets, but a partial block is seen at the pro– to pre–B cell transition. Accordingly, γ1-driven B cell development is disfavored in competition with developing B cells expressing a wild-type (WT) IgH locus. However, the mutant B cells display a long half-life and accumulate in the mature B cell compartment, and even though partial truncation of the Igα cytoplasmic tail compromises their development, it does not affect their maintenance, as it does in WT cells. IgG1-expressing B cells showed an enhanced Ca2+ response upon B cell receptor cross-linking, which was not due to a lack of inhibition by CD22. The enhanced Ca2+ response was also observed in mature B cells that had been switched from IgM to IgG1 expression in vivo. Collectively, these results suggest that the γ1 chain can exert a unique signaling function that can partially replace that of the Igα/β heterodimer in B cell maintenance and may contribute to memory B cell physiology.


Sign in / Sign up

Export Citation Format

Share Document