Hairy Cell Leukaemia Displaying Multiple Surface Immunoglobulin Isotypes Reveal a Functional B-Cell Receptor In Which Isotype Roles Differ

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1567-1567
Author(s):  
Nicola J Weston-Bell ◽  
Gavin Babbage ◽  
Francesco Forconi ◽  
Hanneke C. Kluin-Nelemans ◽  
Surinder S Sahota

Abstract Abstract 1567 The B-cell receptor (BCR) is critical to survival of normal B-cells, and regulates key aspects of cellular behavior. Of these, response to antigen determines pathways of normal B-cell maturation, including isotype switch events that occur by deletional class switch recombination (CSR), an irrevocable event, to yield IgG/A memory B-cells. Less frequently, CSR via a cryptic site generates IgD+ B-cells whereas IgM+IgD+ antigen experienced B-cells synthesize each isotype by an alternative transcript splicing mechanism. The role of the BCR in survival of malignant B-cells however is less well defined, in particular in response to antigen. Intriguingly, in Hairy cell leukemia (HCL), BCR assembly occurs with multiple surface immunoglobulin (sIg) isotypes (mult-HCL), many co-expressed on individual hairy cells (HCs) in an otherwise monoclonal tumor. Multiple isotypes appear to exclude deletional CSR events, and suggests a RNA processing mechanism of molecular assembly. This phenotype is rare even amongst malignant B-cells, and raises the question of the functional relevance of individual variant isotypes. It also potentially presents a model to dissect roles of multiple isotypes on single B-cells. To examine this, we investigated the BCR in CD19+CD11c+CD103+ mult-HCL cases (n=10), in which 2–4 differing sIg isotypes were present on most HCs, with single or, in 3 cases, dual sIgL expression. In all cases, IGHV genes were mutated, and confirmed monoclonality. Phenotype revealed 2 distinct subsets by sIg isotype co-expression, IgD+ve and IgD-ve. Using Ca2+ flux and ERK phosphorylation assays after cross-linking with specific anti-sIg antibodies, we observed a functional BCR in all mult-HCL examined, in both subsets (10/10 cases Ca2+, 6/6 cases ERK). However, striking differences emerged between the two subsets. In sIgD+ve mult-HCL, IgD mediated persistent Ca2+ flux, with flux also evident via >1 sIgH isotype. In marked contrast, in sIgD-ve mult-HCL Ca2+ flux was restricted to a single sIgH isotype, but not via IgM. Flux signals in this subset were transient. In most cases only a single sIgL transduced flux. We next evaluated BCR endocytosis after cross-linking individual isotypes and IgL. In 2 sIgD+ve cases, anti-IgD and anti-Igλ stimulation led to endocytosis of both sIgD and sIgλ, and in 1 case, where examined, anti-IgM stimulation endocytosed both sIgM and sIgλ. In 3 sIgD-ve cases, functional sIgH and sIgL induced endocytosis of the stimulated isotype, but again sIgM was dysfunctional, remaining immobilized on the cell surface. Ca2+ flux through endocytosed isotypes was correspondingly either significantly reduced or ablated in both subsets. In HCs, BCR endocytosis is clearly dependent on functional isotypes and IgL, and parallels events in normal B-cells. Lastly, we examined downstream effects of BCR signalling on cell viability, using soluble (sAb) and bound (bAb) anti-sIg antibodies. In a single IgD+ve mult-HCL case, both sAb and bAb anti-IgM yielded a significant level of apoptosis compared to control antibodies, whereas anti-IgD sAb resulted in no appreciable difference to level of spontaneous apoptosis, suggesting a disengagement of signals from this pathway. This disengagement was also observed in a separate HCL case expressing only IgD, and not in the mult-HCL cohort initially selected, where anti-IgD signals again did not increase levels of apoptosis. In IgD-ve mult-HCL (n=4), sAb and bAb specific cross-linking of IgG/A triggered significant apoptosis. These data demonstrate, for the first time, that mult-HCL retains a functional responsiveness via the BCR, suggesting an absence of anergic effects that may follow chronic antigen exposure in-vivo to self-antigen. Signals via sIgM/G/A isotypes, where functional, induce apoptosis in mult-HCL, whereas sIgD opposes such effects. Despite an apparently unique molecular mechanism of IgD expression in mult-HCL, this isotype appears to be hardwired in B-cells to mediate responses that differ from IgM. The persistent flux observed here indicates a more sustained and robust IgD signaling cascade, as also observed in B-cell models. These data reveal distinctive and opposing effects of individual isotypes on BCR mediated behavior in mult-HCL. While apoptotic responses appear to negate a role for antigen in tumor drive in-vivo, potential antigen engagement via IgD, if dominant leaves this question open. Disclosures: No relevant conflicts of interest to declare.

2014 ◽  
Vol 10 (2) ◽  
pp. e1003916 ◽  
Author(s):  
Carrie B. Coleman ◽  
Jennifer E. McGraw ◽  
Emily R. Feldman ◽  
Alexa N. Roth ◽  
Lisa R. Keyes ◽  
...  
Keyword(s):  
B Cells ◽  
B Cell ◽  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4356-4356
Author(s):  
Andrea Nicola Mazzarello ◽  
Stefano Vergani ◽  
Gerardo Ferrer ◽  
Yun Liu ◽  
Shih-Shih Chen ◽  
...  

Abstract B cell receptor signaling is a key factor in chronic lymphocytic leukemia (CLL), evinced by inhibitory drug ibrutinib's efficacy. Studies of normal and CLL B cells indicate surface membrane IgM or IgD engagement has diverse signaling consequences. But little is known about relative amounts of sIg/co-receptor components within intraclonal fractions and how their compositions affect signaling. We studied relative densities of IgM and IgD and Ig-associated stimulatory and inhibitory co-receptors in two subsets based on: [1] relative densities of IgM and IgD and [2] reciprocal expression of CXCR4/CD5 indicating activation state. Samples from 5 U and 5 M-CLL patients, pre and during (4-6 weeks) ibrutinib treatment, were tested by conventional and by imaging flow cytometry using an ISX Mark II providing multiple spectral images of individual cells in a flow setting. After subfractionating clones for IgM (IgMDim, IgMInt, IgMBright) or IgD (IgDDim, IgDInt, IgDBright) densities, we quantified relative densities of stimulatory/inhibitory molecules on the subsets. A directly proportional change was observed for CD5, CD19, CD20, Siglec10, CD25, HLA-DR, and CD38 as IgM moved from Dim to Bright. Exceptions were CXCR4, which dramatically decreased as IgM density increased, and CD22, that had a constant density in all fractions. Similar changes were seen for IgD except for CD22 which increased in IgDBright density. Again CXCR4 showed the opposite pattern. CD25 and HLADR remained constant within IgD increments. Stimulatory markers CD25 and HLADR changed upward only in the transition to IgMBright. Together these imply signaling through IgM heightens as IgM density increases, but does not through IgD, likely due to increased Siglec 10 and CD22. The reduced amounts of smCXCR4 suggest impaired ability of cells with high smIgM or smIgD to traffic. We examined subpopulations based on CXCR4 and CD5. IgD and IgM densities increased from resting (RF) CXCR4Bright/CD5Dim to intermediate (INT) CXCR4Int/CD5Int to proliferative (PF) CXCR4Dim/CD5Bright fractions, although the degree of upregulation was more marked for IgD than IgM. All stimulatory/inhibitory coreceptors also increased in density from RF to PF. Interestingly, CD22 and IgD retained a constantdensity from RF to INT but increased considerably at the PF. Although stimulatory molecules CD25, CD38 and HLADR had upward trends, peaking occurred in the PF. Collectively, this implies signaling capacity through smIgM amplifies toward the PF due to higher smIgM density and IgD upregulation. Finally, we evaluated CLL clones as a whole as well as based on the subsets above for ibrutinib treatment induced changes. Clonally, a density decrement occurred for smIgD and an increment for smIgM. Data for the other molecules fell into 3 categories based on relative density changes: Decreasing: CD5, CD20, CD38, CD25, HLA-DR; Increasing: CXCR4: Invariant: CD22, CD19, Siglec10. For subfractionating based on smIgs density, ibrutinib drastically reduced density differences for co-receptors and activation markers among IgM or IgD density subpopulations with IgMBright and IgDBright fractions more affected than the Dim and Intermediate density counterparts. Similarly for the CXCR4/CD5 subpopulations, lower differences in relative expression of coreceptors from RF to PF were found. As for IgM and IgD levels, the PF was the most reduced. The composite effect was a reduced slope of change among the original sets of density change categories (IgMDim -> IgMBright; IgDDim -> IgDBright; RF to PF), leading to more phenotypically homogenous subpopulations. In summary, prior to ibrutinib therapy, both the Ig and most of the associated molecules increase density in subsets marked by increased IgM and IgD densities and marked by decreasing CXCR4/CD5 densities. However, there was a major difference in density correlations for CXCR4 and CD22. CXCR4, levels were lowest on IgMBright and IgDBright cells which differs from published data using anti-IgM beads. For CD22 the highest levels were in IgDBright but not in IgMBright and in CXCR4/CD5 subset with the highest IgD and IgM (CXCR4Dim/CD5Bright). In contrast, ibrutinib treatment led to an overall change in coreceptor molecules altering considerably the density relationships with IgM and IgD. Concomitantly, these culminate in a downregulatory membrane stimulatory environment. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2903-2903
Author(s):  
Y. Lynn Wang ◽  
Shuhua Cheng ◽  
Jiao Ma ◽  
Ailin Guo ◽  
Pin Lu ◽  
...  

Abstract Abstract 2903 Purpose: Bruton tyrosine kinase (BTK) is a component of the B-cell receptor signaling pathway. Ibrutinib (previously known as PCI-32765), a first in class, covalent BTK inhibitor, has demonstrated significant clinical activity against CLL in early clinical trials. Understanding the molecular mechanisms of action would shed light on CLL pathophysiology and provide additional opportunities for the development of new therapies. Experimental Design: The anti-tumor activity of ibrutinib in CLL has been investigated previously using either an ex vivo approach or a mouse model (Herman et.al, Blood. 2011;117:6287–96 and Ponader et.al, Blood. 2012;119:1182–9). In this study, we have chosen, instead, a patient-oriented in vivo approach by using samples from an ongoing phase 1b trial of ibrutinib (NCT01105247). We prospectively collected serial samples from CLL patients (n=14) before and at several time points after the initiation of therapy and analyzed them for cellular and molecular signaling events. Results: We demonstrated that levels of the phosphorylated BTK protein (p-BTK) in CLL cells from treatment-naïve patients were significantly higher than in normal B cells, explaining why CLL cells are more susceptible to BCR inhibition than normal B cells. Response assessments, performed at the end of cycle 2 (∼Day 56), demonstrated nodal responses in all patients by CT scan. Ex vivo apoptosis did occur but required high concentrations of ibrutinib (>500 nM). In addition, in vivo apoptosis was rarely observed in serial peripheral blood samples collected from treated patients. With these serial samples, we found that the population of Ki67+ cells were gradually decreased over a 28-day ibrutinib treatment course. Using a newly established co-culture system that induces CLL proliferation in vitro, the analysis of several parameters, including Ki-67 expression, cell growth and bromodeoxyuridine (BrdU) incorporation (shown in the figure), revealed that the proliferation of CLL cells was directly inhibited by ibrutinib (200 nM). Furthermore, activities of BTK and downstream signaling events, such as the phosphorylation of PLCg2, AKT and ERK, were all suppressed over time in ibrutinib-treated patients. Conclusions: With primarily an in vivo approach, we have demonstrated that the blockage of cell proliferation was a major effect of ibrutinib against leukemic CLL cells. Blocking cell proliferation via inhibition of BTK-mediated signaling concurs with clinical responses in ibrutinib-treated CLL patients. Disclosures: Leonard: Pharmacyclics Inc.: Consultancy, Honoraria. Buggy:Pharmacyclics: Employment, Equity Ownership.


2004 ◽  
Vol 199 (6) ◽  
pp. 855-865 ◽  
Author(s):  
Amy Reichlin ◽  
Anna Gazumyan ◽  
Hitoshi Nagaoka ◽  
Kathrin H. Kirsch ◽  
Manfred Kraus ◽  
...  

B cell receptor (BCR) signaling is mediated through immunoglobulin (Ig)α and Igβ a membrane-bound heterodimer. Igα and Igβ are redundant in their ability to support early B cell development, but their roles in mature B cells have not been defined. To examine the function of Igα–Igβ in mature B cells in vivo we exchanged the cytoplasmic domain of Igα for the cytoplasmic domain of Igβ by gene targeting (Igβc→αc mice). Igβc→αc B cells had lower levels of surface IgM and higher levels of BCR internalization than wild-type B cells. The mutant B cells were able to complete all stages of development and were long lived, but failed to differentiate into B1a cells. In addition, Igβc→αc B cells showed decreased proliferative and Ca2+ responses to BCR stimulation in vitro, and were anergic to T-independent and -dependent antigens in vivo.


mSphere ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Yan Chen ◽  
Devin N. Fachko ◽  
Nikita S. Ivanov ◽  
Rebecca L. Skalsky

ABSTRACT Antigen recognition by the B cell receptor (BCR) is a physiological trigger for reactivation of Epstein-Barr virus (EBV) and can be recapitulated in vitro by cross-linking of surface immunoglobulins. Previously, we identified a subset of EBV microRNAs (miRNAs) that attenuate BCR signal transduction and subsequently dampen lytic reactivation in B cells. The roles of host miRNAs in the EBV lytic cycle are not completely understood. Here, we profiled the small RNAs in reactivated Burkitt lymphoma cells and identified several miRNAs, such as miR-141, that are induced upon BCR cross-linking. Notably, EBV encodes a viral miRNA, miR-BART9, with sequence homology to miR-141. To better understand the functions of these two miRNAs, we examined their molecular targets and experimentally validated multiple candidates commonly regulated by both miRNAs. Targets included B cell transcription factors and known regulators of EBV immediate-early genes, leading us to hypothesize that these miRNAs modulate kinetics of the lytic cascade in B cells. Through functional assays, we identified roles for miR-141 and EBV miR-BART9 and one specific target, FOXO3, in progression of the lytic cycle. Our data support a model whereby EBV exploits BCR-responsive miR-141 and further mimics activity of this miRNA family via a viral miRNA to promote productive lytic replication. IMPORTANCE EBV is a human pathogen associated with several malignancies. A key aspect of lifelong virus persistence is the ability to switch between latent and lytic replication modes. The mechanisms governing latency, reactivation, and progression of the lytic cycle are only partly understood. This study reveals that specific miRNAs can act to support the EBV lytic phase following BCR-mediated reactivation triggers. Furthermore, this study identifies a role for FOXO3, commonly suppressed by both host and viral miRNAs, in modulating progression of the EBV lytic cycle.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3894-3894
Author(s):  
Ryan Collins ◽  
Prabhjot Kaur ◽  
Olga Danilova ◽  
James Direnzo ◽  
Alexey V. Danilov

Abstract Abstract 3894 p63 is a p53 homolog whose function depends on the cellular context. The full-length TAp63 variant may carry an anti-oncogenic potential in solid tumor models, where it mediates Ras-induced cellular senescence, antagonizes tumorigenesis and suppresses the development of metastases. In hepatoma cells TAp63 is involved in activation of both extrinsic and intrinsic apoptosis pathways. By contrast, ΔNp63, an amino-terminally truncated p63 variant, is oncogenic in tumors of squamous cell origin. TAp63 is the predominantly expressed p63 isoform in lymphoid malignancies. Increased expression of TAp63 in diffuse large B-cell lymphoma confers an unfavorable prognosis. In CLL TAp63 was shown to mediate B-cell homing to the bone marrow, thus possibly contributing to apoptosis evasion. We studied expression of p63 in CLL and determined whether p63 plays a role in CLL B-cell survival and sensitivity to chemotherapy. We enrolled 25 previously untreated subjects with B-CLL at the Norris Cotton Cancer Center (Lebanon, NH). CLL B-cells were isolated from peripheral blood with standard Ficoll-Hypaque technique and purified using a B-cell (CLL) Isolation Kit. Small interfering RNA against p63 were delivered using Lonza Nucleofector with transfection efficiency of 20–50% and viability of 60–80% at 24 h. Viability was enhanced when cells were cocultured with “feeder cells”. To test sensitivity to chemotherapy, cells were treated with 10 μM chlorambucil and 5 μM fludarabine for 48–72 h. For apoptosis analysis cells were stained with Annexin V and 7-AAD and assayed by flow cytometry. Five lymph node tissues were analyzed for p63 expression by immunohistochemistry using a mouse monoclonal p63 antibody (clone 4A4). Of 25 CLL patients 15 were males (60%). Median age was 61 years. Median follow up was 3 years. Most patients presented in Rai stage 0–1 (92%). TAp63 mRNA transcripts were expressed in all CLL samples, while ΔNp63 variant was not detected. TAp63α was the predominantly expressed splicing variant. A C-terminally truncated TAp63γ variant was detected at a low level. TAp63 mRNA transcript levels were higher in CLL B-cells than in normal B-cells, but 10- to 100-fold lower than in high-grade lymphoma cell lines. Of five lymph nodes analyzed, weak nuclear p63 staining was detected in one. In this small cohort, p63 expression in the peripheral blood CLL B-cells did not correlate with ZAP-70 expression. CD38-positive (>30%) CLL samples expressed higher TAp63 mRNA transcript levels (p<0.05). siRNA knockdown of p63 in CLL cells resulted in protection from spontaneous apoptosis at 24–48 h, which persisted when cells were cultured on a “feeder layer”. Furthermore, p63 knockdown conferred protection against chlorambucil and fludarabine. B-cell receptor crosslinking with IgM resulted in a 2.5-fold repression of TAp63 transcription, consistent with the pro-survival role of a B-cell receptor in CLL. Thus, TAp63α is the predominantly expressed p63 variant in the peripheral blood CLL cells. TAp63a contributes to the intrinsic apoptosis program in CLL and may play a role in sensitizing CLL B-cells to standard chemotherapy drugs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 109 (9) ◽  
pp. 3989-3997 ◽  
Author(s):  
Laurent D. Vallat ◽  
Yuhyun Park ◽  
Cheng Li ◽  
John G. Gribben

Abstract Gene expression in cells is a dynamic process but is usually examined at a single time point. We used gene expression profiling over time to build temporal models of gene transcription after B-cell receptor (BCR) signaling in healthy and malignant B cells and chose this as a model since BCR cross-linking induces both cell proliferation and apoptosis, with increased apoptosis in chronic lymphocytic leukemia (CLL) compared to healthy B cells. To determine the basis for this, we examined the global temporal gene expression profile for BCR stimulation and developed a linear combination method to summarize the effect of BCR simulation over all the time points for all patients. Functional learning identified common early events in healthy B cells and CLL cells. Although healthy and malignant B cells share a common genetic pattern early after BCR signaling, a specific genetic program is engaged by the malignant cells at later time points after BCR stimulation. These findings identify the molecular basis for the different functional consequences of BCR cross-linking in healthy and malignant B cells. Analysis of gene expression profiling over time may be used to identify genes that might be rational targets to perturb these pathways.


2019 ◽  
Vol 32 (1) ◽  
pp. 17-26
Author(s):  
Rongjian Hong ◽  
Nannan Lai ◽  
Ermeng Xiong ◽  
Rika Ouchida ◽  
Jiping Sun ◽  
...  

Abstract B-cell novel protein 1 (BCNP1) has recently been identified as a new B-cell receptor (BCR) signaling molecule but its physiological function remains unknown. Here, we demonstrate that mice deficient in BCNP1 exhibit impaired B-cell maturation and a reduction of B-1a cells. BCNP1-deficient spleen B cells show enhanced survival, proliferation and Ca2+ influx in response to BCR cross-linking as compared with wild-type spleen B cells. Consistently, mutant B cells show elevated phosphorylation of SYK, B-cell linker protein (BLNK) and PLCγ2 upon BCR cross-linking. In vivo, BCNP1-deficient mice exhibit enhanced humoral immune responses to T-independent and T-dependent antigens. Moreover, aged mutant mice contain elevated levels of serum IgM and IgG3 antibodies and exhibit polyclonal and monoclonal B-cell expansion in lymphoid organs. These results reveal distinct roles for BCNP1 in B-cell development, activation and homeostasis.


Sign in / Sign up

Export Citation Format

Share Document