scholarly journals Correction: Code-Assisted Discovery of TAL Effector Targets in Bacterial Leaf Streak of Rice Reveals Contrast with Bacterial Blight and a Novel Susceptibility Gene

2014 ◽  
Vol 10 (4) ◽  
pp. e1004126 ◽  
Author(s):  
2014 ◽  
Vol 10 (2) ◽  
pp. e1003972 ◽  
Author(s):  
Raul A. Cernadas ◽  
Erin L. Doyle ◽  
David O. Niño-Liu ◽  
Katherine E. Wilkins ◽  
Timothy Bancroft ◽  
...  

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Zhe Ni ◽  
Yongqiang Cao ◽  
Xia Jin ◽  
Zhuomin Fu ◽  
Jianyuan Li ◽  
...  

Abstract Background Xanthomonas oryzae (Xo) is one of the important pathogenic bacterial groups affecting rice production. Its pathovars Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) cause bacterial blight and bacterial leaf streak in rice, respectively. Xo infects host plants by relying mainly on its transcription activator-like effectors (TALEs) that bind to host DNA targets, named effector binding elements (EBEs), and induce the expression of downstream major susceptibility genes. Blocking TALE binding to EBE could increase rice resistance to the corresponding Xo. Findings We used CRISPR/Cas9 to edit the EBEs of three major susceptibility genes (OsSWEET11, OsSWEET14 and OsSULTR3;6) in the rice varieties Guihong 1 and Zhonghua 11. Both varieties have a natural one-base mutation in the EBE of another major susceptibility gene (OsSWEET13) which is not induced by the corresponding TALE. Two rice lines GT0105 (from Guihong 1) and ZT0918 (from Zhonghua 11) with target mutations and transgene-free were obtained and showed significantly enhanced resistance to the tested strains of Xoo and Xoc. Furthermore, under simulated field conditions, the morphology and other agronomic traits of GT0105 and ZT0918 were basically the same as those of the wild types. Conclusions In this study, we first reported that the engineering rice lines obtained by editing the promoters of susceptibility genes are resistant to Xoo and Xoc, and their original agronomic traits are not affected.


2018 ◽  
Author(s):  
Tuan Tu Tran ◽  
Alvaro L Pérez-Quintero ◽  
Issa Wonni ◽  
Sara C. D. Carpenter ◽  
Yanhua Yu ◽  
...  

AbstractMost Xanthomonas species translocate Transcription Activator-Like (TAL) effectors into plant cells where they function like plant transcription factors via a programmable DNA-binding domain. Characterized strains of rice pathogenic X. oryzae pv. oryzae harbor 9-16 different tal effector genes, but the function of only a few of them has been decoded. Using sequencing of entire genomes, we first performed comparative analyses of the complete repertoires of TAL effectors, herein referred to as TALomes, in three Xoo strains forming an African genetic lineage different from Asian Xoo. A phylogenetic analysis of the three TALomes combined with in silico predictions of TAL effector targets showed that African Xoo TALomes are highly conserved, genetically distant from Asian ones, and closely related to TAL effectors from the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Nine clusters of TAL effectors could be identified among the three TALomes, including three showing higher levels of variation in their repeat variable diresidues (RVDs). Detailed analyses of these groups revealed recombination events as a possible source of variation among TAL effector genes. Next, to address contribution to virulence, nine TAL effector genes from the Malian Xoo strain MAI1 and four allelic variants from the Burkinabe Xoo strain BAI3, thus representing most of the TAL effector diversity in African Xoo strains, were expressed in the TAL effector-deficient X. oryzae strain X11-5A for gain-of-function assays. Inoculation of the susceptible rice variety Azucena lead to the discovery of three TAL effectors promoting virulence, including two TAL effectors previously reported to target the susceptibility (S) gene OsSWEET14 and a novel major virulence contributor, TalB. RNA profiling experiments in rice and in silico prediction of EBEs were carried out to identify candidate targets of TalB, revealing OsTFX1, a bZIP transcription factor previously identified as a bacterial blight S gene, and OsERF#123, which encodes a subgroup IXc AP2/ERF transcription factor. Use of designer TAL effectors demonstrated that induction of either gene resulted in greater susceptibility to strain X11-5A. The induction of OsERF#123 by BAI3Δ1, a talB knockout derivative of BAI3, carrying these designer TAL effectors increased virulence of BAI3Δ1 validating OsERF#123 as a new, bacterial blight S gene.Author SummaryThe ability of most Xanthomonas plant pathogenic bacteria to infect their hosts relies on the action of a specific family of proteins called TAL effectors, which are transcriptional activators injected into the plant by the bacteria. TAL effectors enter the plant cell nucleus and bind to the promoters of specific plant genes. Genes that when induced can benefit pathogen multiplication or disease development are called susceptibility (S) genes. Here, we perform a comparative analysis of the TAL effector repertoires of three strains of X. oryzae pv. oryzae, which causes bacterial leaf blight of rice, a major yield constraint in this staple crop. Using sequencing of entire genomes, we compared the large repertoires of TAL effectors in three African Xoo strains which form a genetic lineage distinct from Asian strains. We assessed the individual contribution to pathogen virulence of 13 TAL effector variants represented in the three strains, and identified one that makes a major contribution. By combining host transcriptome profiling and TAL effector binding sites prediction, we identified two targets of this TAL effector that function as S genes, one previously identified, and one, new S gene. We validated the new S gene by functional characterization using designer TAL effectors. Both S genes encode transcription factors and can therefore be considered as susceptibility hubs for pathogen manipulation of the host transcriptome. Our results provide new insights into the diversified strategies underlying the roles of TAL effectors in promoting plant disease.


2020 ◽  
Author(s):  
Andrew C. Read ◽  
Mathilde Hutin ◽  
Matthew J. Moscou ◽  
Fabio C. Rinaldi ◽  
Adam J. Bogdanove

AbstractThe Xo1 locus in the heirloom rice variety Carolina Gold Select confers resistance to bacterial leaf streak and bacterial blight, caused by Xanthomonas oryzae pvs. oryzicola and oryzae, respectively. Resistance is triggered by pathogen-delivered transcription activator-like effectors (TALEs) independent of their ability to activate transcription, and is suppressed by variants called truncTALEs common among Asian strains. By transformation of the susceptible variety Nipponbare, we show that one of 14 nucleotide-binding, leucine-rich repeat (NLR) protein genes at the locus, with a zfBED domain, is the Xo1 gene. Analyses of published transcriptomes revealed that the Xo1-mediated response is similar to those of NLR resistance genes Pia and Rxo1 and distinct from that associated with induction of the executor resistance gene Xa23, and that a truncTALE dampens or abolishes activation of defense-associated genes by Xo1. In Nicotiana benthamiana leaves, fluorescently-tagged Xo1 protein, like TALEs and truncTALEs, localized to the nucleus. And, endogenous Xo1 specifically co-immunoprecipitated from rice leaves with a pathogen-delivered, epitope-tagged truncTALE. These observations suggest that suppression of Xo1-function by truncTALEs occurs through direct or indirect physical interaction. They further suggest that effector co-immunoprecipitation may be effective for identifying or characterizing other resistance genes.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Kevin L. Cox ◽  
Fanhong Meng ◽  
Katherine E. Wilkins ◽  
Fangjun Li ◽  
Ping Wang ◽  
...  

2018 ◽  
Vol 19 (10) ◽  
pp. 3008 ◽  
Author(s):  
Zhiyuan Ji ◽  
Chunlian Wang ◽  
Kaijun Zhao

Bacterial blight (BB) and bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola, respectively, are two devastating diseases in rice planting areas worldwide. It has been proven that adoption of rice resistance is the most effective, economic, and environment-friendly strategy to avoid yield loss caused by BB and BLS. As a model system for plant—pathogen interaction, the rice—X. oryzae pathosystem has been intensively investigated in the past decade. Abundant studies have shown that the resistance and susceptibility of rice to X. oryzae is determined by molecular interactions between rice genes or their products and various pathogen effectors. In this review, we briefly overviewed the literature regarding the diverse interactions, focusing on recent advances in uncovering mechanisms of rice resistance and X. oryzae virulence. Our analysis and discussions will not only be helpful for getting a better understanding of coevolution of the rice innate immunity and X. oryzae virulence, but it will also provide new insights for application of plant R genes in crop breeding.


Sign in / Sign up

Export Citation Format

Share Document