scholarly journals CD4+T cells mediate protection against Zika associated severe disease in a mouse model of infection

2018 ◽  
Vol 14 (9) ◽  
pp. e1007237 ◽  
Author(s):  
Mariah Hassert ◽  
Kyle J. Wolf ◽  
Katherine E. Schwetye ◽  
Richard J. DiPaolo ◽  
James D. Brien ◽  
...  
2015 ◽  
Vol 9 (3) ◽  
pp. 689-701 ◽  
Author(s):  
J Brasseit ◽  
E Althaus-Steiner ◽  
M Faderl ◽  
N Dickgreber ◽  
L Saurer ◽  
...  
Keyword(s):  
T Cells ◽  

2014 ◽  
Vol 10 (5) ◽  
pp. e1004068 ◽  
Author(s):  
Stefanie Linnerbauer ◽  
Uta Behrends ◽  
Dinesh Adhikary ◽  
Klaus Witter ◽  
Georg W. Bornkamm ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2280-2280
Author(s):  
Katharina Nora Steinitz ◽  
Brigitte Binder ◽  
Christian Lubich ◽  
Rafi Uddin Ahmad ◽  
Markus Weiller ◽  
...  

Abstract Abstract 2280 Development of neutralizing antibodies against FVIII is the major complication in the treatment of patients with hemophilia A. Although several genetic and environmental risk factors have been identified, it remains unclear why some patients develop antibodies while others do not. Understanding the underlying mechanisms that drive the decision of the immune system whether or not to make antibodies against FVIII would help to design novel therapeutics. We used a new humanized hemophilic mouse model that expresses the human MHC-class II molecule HLA-DRB1*1501 on the background of a complete knock out of all murine MHC-class II genes. Initial studies had indicated that only a fraction of these mice developed antibodies when intravenously (i.v.) treated with human FVIII. These findings which resemble the situation in patients with severe hemophilia A, evoked the question if the lack of antibody development in non-responder mice reflects the induction of specific immune tolerance after i.v. application of FVIII or represent non-responsiveness for other reasons. We addressed this question by choosing another application route (subcutaneous, s.c.) and by combining i.v. application with a concomitant activation of the innate immune system applying LPS, a well characterized ligand for toll-like receptor 4, together with FVIII. Both strategies resulted in the development of antibodies in all mice included in the study what suggested that non-responsiveness against i.v. FVIII does not reflect an inability to develop antibodies against FVIII. Next, we asked if i.v. FVIII does induce immune tolerance in non-responder mice. We pretreated mice with i.v. FVIII, selected non-responder mice and challenged them with s.c. FVIII. None of the mice developed antibodies what indicated that i.v. pretreatment had induced immune tolerance in non-responder mice. Currently, we test the hypothesis that immune tolerance after i.v. application is induced and maintained by FVIII-specific regulatory T cells. The differences in responder rates after i.v. and s.c. application of FVIII raised the question if there are differences in FVIII T-cell epitopes involved in the initial activation of FVIII-specific CD4+ T cells. We obtained spleen cells from mice treated with either i.v. or s.c. FVIII and generated CD4+ T-cell hybridoma libraries that were tested for peptide specificities. For this purpose we used a FVIII peptide library containing 15 mers with an offset of 3 amino acids. Our results indicate that the pattern of FVIII-specific T-cell epitopes involved in the activation of FVIII-specific CD4+ T cells after i.v. and s.c. application of FVIII is almost identical and represents a small set of FVIII peptides distributed over the A1, A2, B, A3 and C1 domains. Based on our results we conclude that the new HLA-DRB1*1501 hemophilic mouse model represents an interesting opportunity to uncover the mechanisms that drive the decision of the immune system whether or not to develop antibodies against FVIII. Disclosures: Steinitz: Baxter BioScience: Employment. Binder:Baxter BioScience: Employment. Lubich:Baxter BioScience: Employment. Ahmad:Baxter BioScience: Employment. Weiller:Baxter BioScience: Employment. de la Rosa:Baxter BioScience: Employment. Schwarz:Baxter BioScience: Employment. Scheiflinger:Baxter BioScience: Employment. Reipert:Baxter Innovations GmbH: Employment.


2017 ◽  
Vol 62 (21) ◽  
pp. 2372-2379
Author(s):  
Kai LIU ◽  
HuFeng XU ◽  
Lei WANG ◽  
ChenYang SUN ◽  
XinMin LI ◽  
...  

2009 ◽  
Vol 50 ◽  
pp. S250-S251
Author(s):  
K. Derkow ◽  
D. Seidel ◽  
I. Eickmeier ◽  
B. Wiedenmann ◽  
E. Schott

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3242-3242 ◽  
Author(s):  
Mobin Karimi ◽  
Theresa M Leichner ◽  
Atsushi Satake ◽  
David Raulet ◽  
Taku Kambayashi

Abstract In allogeneic hematopoietic stem cell transplantation (HSCT), identification of mechanisms to control GVHD yet maintain GVL responses is of critical importance. One key effector cell that mediates both GVHD and GVL is the CD8+ T cell, which expands in response to T cell receptor (TCR) stimulation by allogeneic MHC class I molecules during allogeneic HSCT. In addition, co-stimulatory molecules facilitate the TCR-mediated activation process and the effector function of CD8+ T cells. Recent data suggest that NKG2D may play a co-stimulatory role in activation and in augmenting anti-tumor cytotoxic responses of CD8+ T cells. NKG2D is an NK cell-associated receptor that is also expressed on all human CD8+ T cells and on activated/memory mouse CD8+ T cells. NKG2D recognizes a diverse array of MHC-related ligands that are expressed by many tumors and induced on cells under stress such as myeloablative conditioning during HSCT. As the role of NKG2D in allogeneic HSCT is unknown, we hereby investigated the role of NKG2D on CD8+ T cells in a mouse model of GVHD and GVL. Our results show that a large fraction (40-50%) of mouse CD8+ T cells inducibly express NKG2D upon activation by allogeneic MHC in vitro and in vivo. To test the role of NKG2D in GVHD pathogenesis, we employed a major MHC-mismatched mouse model of GVHD involving the transplantation of C57BL/6-derived CD8+ T cells and bone marrow (BM) into lethally irradiated Balb/c mice (B6→Balb/c). Using 3 different approaches to block NKG2D on CD8+ T cells (shRNA-mediated silencing, germline NKG2D deficiency, and antibody blockade), we found that weight loss, clinical score, and survival were significantly improved in transplanted mice with NKG2D blockade. The attenuation in GVHD correlated with a significant reduction in TNFα and IFNγ production, cytotoxicity, and proliferation (BrdU incorporation) by CD8+ T cells. Although CD4+ T cells did not express NKG2D, a protective effect of NKG2D blockade was still observed in GVHD induced by a mixture of CD8+ and CD4+ T cells, albeit to a lesser extent. We next tested the effects of NKG2D on CD8+ T cell-mediated GVL. To this end, irradiated Balb/c mice were transplanted with C57BL/6-derived CD8+ T cells and BM, challenged intravenously with luciferase-positive A20 leukemia cells, and followed by total body imaging of luciferase-expressing cells. Given that NKG2D ligands are constitutively expressed on many tumor cells and plays an important role in their eradication, we predicted that continuous NKG2D blockade would inhibit GVL effects. However, as NKGD ligands are upregulated only transiently on stressed normal tissue, we reasoned that transient NKG2D blockade might be sufficient to attenuate GVHD and allow CD8+ T cells to regain their GVL function. To test this hypothesis, we compared the effect of anti-NKG2D antibody as continuous treatment or as 5-day transient treatment to mice receiving isotype control antibody. As expected, mice that received isotype control antibody cleared the A20 cells but developed severe GVHD. Continuous anti-NKG2D antibody-mediated blockade improved GVHD but also blunted the GVL response leading to increased A20 growth. In contrast, a large proportion of mice transiently treated with anti-NKG2D antibody cleared the A20 cells, while maintaining the attenuated GVHD state. Together, these data support a positive role of NKG2D on CD8+ T cells in mediating GVHD and GVL. Given the transient nature of NKG2D ligand upregulation on stressed tissues, a window of opportunity may exist where transient NKG2D blockade could provide a novel therapeutic strategy for treatment of acute GVHD while preserving the GVL function of CD8+ T cells after allogeneic HSCT. Disclosures: No relevant conflicts of interest to declare.


PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0143715 ◽  
Author(s):  
Ira an Haack ◽  
Katja Derkow ◽  
Mathias Riehn ◽  
Marc-Nicolas Rentinck ◽  
Anja A. Kühl ◽  
...  

2017 ◽  
Vol 114 (38) ◽  
pp. 10190-10195 ◽  
Author(s):  
Jeongsu Do ◽  
Dongkyun Kim ◽  
Sohee Kim ◽  
Alice Valentin-Torres ◽  
Nina Dvorina ◽  
...  

Dysregulated Foxp3+Treg functions result in uncontrolled immune activation and autoimmunity. Therefore, identifying cellular factors modulating Treg functions is an area of great importance. Here, using Treg-specificIl27ra−/−mice, we report that IL-27 signaling in Foxp3+Tregs is essential for Tregs to control autoimmune inflammation in the central nervous system (CNS). Following experimental autoimmune encephalomyelitis (EAE) induction, Treg-specificIl27ra−/−mice develop more severe EAE. Consistent with the severe disease, the numbers of IFNγ- and IL-17–producing CD4 T cells infiltrating the CNS tissues are greater in these mice. Treg accumulation in the inflamed CNS tissues is not affected by the lack of IL-27 signaling in Tregs, suggesting a functional defect ofIl27ra−/−Tregs. IL-10 production by conventional CD4 T cells and their CNS accumulation are rather elevated in Treg-specificIl27ra−/−mice. Analysis with Treg fate-mapping reporter mice further demonstrates that IL-27 signaling in Tregs may control stability of Foxp3 expression. Finally, systemic administration of recombinant IL-27 in Treg-specificIl27ra−/−mice fails to ameliorate the disease even in the presence of IL-27–responsive conventional CD4 T cells. These findings uncover a previously unknown role of IL-27 in regulating Treg function to control autoimmune inflammation.


Sign in / Sign up

Export Citation Format

Share Document