treg function
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 32)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Min Hu ◽  
Natasha M. Rogers ◽  
Jennifer Li ◽  
Geoff Y. Zhang ◽  
Yuan Min Wang ◽  
...  

Kidney transplantation is the most common solid organ transplant and the best current therapy for end-stage kidney failure. However, with standard immunosuppression, most transplants develop chronic dysfunction or fail, much of which is due to chronic immune injury. Tregs are a subset of T cells involved in limiting immune activation and preventing autoimmune disease. These cells offer the potential to provide tolerance or to allow reduction in immunosuppression in kidney transplants. The importance of Tregs in kidney transplantation has been shown in a number of seminal mouse and animal studies, including those with T cell receptors (TCRs) transgenic Tregs (TCR-Tregs) or Chimeric Antigen Receptor (CAR) Tregs (CAR-Tregs) showing that specificity increases the potency of Treg function. Here we outline the animal and human studies and clinical trials directed at using Tregs in kidney transplantation and other tolerance settings and the various modifications to enhance allo-specific Treg function in vivo and in vitro.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jian Lu ◽  
Weiwei Wang ◽  
Peiyuan Li ◽  
Xiaodong Wang ◽  
Chao Gao ◽  
...  

AbstractRegulatory T cells (Tregs), which characteristically express forkhead box protein 3 (Foxp3), are essential for the induction of immune tolerance. Here, we investigated microRNA-146a (miR-146a), a miRNA that is widely expressed in Tregs and closely related to their homeostasis and function, with the aim of enhancing the function of Tregs by regulating miR-146a and then suppressing transplant rejection. The effect of the absence of miR-146a on Treg function in the presence or absence of rapamycin was detected in both a mouse heart transplantation model and cell co-cultures in vitro. The absence of miR-146a exerted a mild tissue-protective effect by transiently prolonging allograft survival and reducing the infiltration of CD4+ and CD8+ T cells into the allografts. Meanwhile, the absence of miR-146a increased Treg expansion but impaired the ability of Tregs to restrict T helper cell type 1 (Th1) responses. A miR-146a deficiency combined with interferon (IFN)-γ blockade repaired the impaired Treg function, further prolonged allograft survival, and alleviated rejection. Importantly, miR-146a regulated Tregs mainly through the IFN-γ/signal transducer and activator of transcription (STAT) 1 pathway, which is implicated in Treg function to inhibit Th1 responses. Our data suggest miR-146a controls a specific aspect of Treg function, and modulation of miR-146a may enhance Treg efficacy in alleviating heart transplant rejection in mice.


Blood ◽  
2021 ◽  
Vol 138 (8) ◽  
pp. 591-592
Author(s):  
Rick Kapur ◽  
John W. Semple
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jayashree Srinivasan ◽  
Jessica N. Lancaster ◽  
Nandini Singarapu ◽  
Laura P. Hale ◽  
Lauren I. R. Ehrlich ◽  
...  

Thymic epithelial cells (TECs) and hematopoietic antigen presenting cells (HAPCs) in the thymus microenvironment provide essential signals to self-reactive thymocytes that induce either negative selection or generation of regulatory T cells (Treg), both of which are required to establish and maintain central tolerance throughout life. HAPCs and TECs are comprised of multiple subsets that play distinct and overlapping roles in central tolerance. Changes that occur in the composition and function of TEC and HAPC subsets across the lifespan have potential consequences for central tolerance. In keeping with this possibility, there are age-associated changes in the cellular composition and function of T cells and Treg. This review summarizes changes in T cell and Treg function during the perinatal to adult transition and in the course of normal aging, and relates these changes to age-associated alterations in thymic HAPC and TEC subsets.


2021 ◽  
Author(s):  
Yousra Ajouaou ◽  
Abdulkader Azouz ◽  
Anaelle Taquin ◽  
Hind Hussein ◽  
Fabienne Andris ◽  
...  

Abstract The oxygen sensor PHD2 (prolyl hydroxylase domain 2) plays an important role in cell hypoxia adaptation by regulating the stability of HIF proteins (HIF1α and HIF2α) in numerous cell types including T lymphocytes. The role of oxygen sensor on immune cells, in particular on regulatory T cell (Treg) function, has not been fully elucidated. The purpose of our study was to evaluate the role of PHD2 in the regulation of Treg phenotype and function. We demonstrate herein that selective ablation of PHD2 expression in Treg (PHD2ΔTreg mice) leads to a spontaneous systemic inflammatory syndrome, as evidenced by weight loss, development of a rectal prolapse, splenomegaly, shortening of the colon and elevated expression of IFN-γ in the mesenteric lymph nodes, intestine and spleen. PHD2 deficiency in Tregs led to an increased number of activated CD4 conventional T cells expressing an effector/Th1-like phenotype. Concomitantly, the expression of innate-type cytokines such as IL1-β, IL-12p40, IL-12p35 and TNF-α was found to be elevated in peripheral (gut) tissues and spleen. PHD2ΔTreg mice also displayed an enhanced sensitivity to DSS-induced colitis and to toxoplasmosis, suggesting that PHD2-deficient Tregs do not efficiently control inflammatory response in vivo, in particular immune responses characterized by IFN-γ production. Further analysis revealed that Treg dysregulation is largely prevented in PHD2-HIF2α (PHD2-HIF2αΔTreg mice), but not in PHD2-HIF1α (PHD2-HIF1αΔTreg mice) double KOs, suggesting an important and possibly selective role of the PHD2-HIF2α axis in the control of Treg function. Finally, the transcriptomic analysis of PHD2-deficient Tregs revealed an altered expression of several chemokine receptors including CXCR3, a finding corroborated by the altered in vivo localization of PHD2-deficient Tregs in splenic tissues. Collectively, these findings uncover an important role of the PHD2-HIF2α axis in regulatory T cell positioning and trafficking.


2021 ◽  
Author(s):  
Juan Huang ◽  
Ziyan Yang ◽  
Yanyun Li ◽  
Xingxing Chai ◽  
Yanfang Liang ◽  
...  

Abstract Inflammatory bowel diseases (IBD), mainly comprising ulcerative colitis (UC) and Crohn's Disease, are most often a polygenic disorder with contributions from the intestinal microbiome, defects in barrier function, and dysregulated host responses to microbial stimulation. Strategies that target the microbiota have emerged as potential therapies and, of these, probiotics have gained the greatest attention. Herein, we isolated a strain of Lactobacillus paracasei R3 (L.p R3) with strong biofilm formation ability from infant feces. Interestingly, we also found L.p R3 strain can ameliorate the general symptoms of murine colitis, alleviate inflammatory cell infiltration and inhibit Th17 while promote Treg function in murine DSS-induced colitis. Overall, this study suggested that L.p R3 strain significantly improves the symptoms and the pathological damage of mice with colitis and influences the immune function by regulating Th17/Treg cell balance in DSS-induced colitis in mice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yi Dong ◽  
Cuiping Yang ◽  
Fan Pan

Regulatory T (Treg) cells are indispensable for immune homeostasis due to their roles in peripheral tolerance. As the master transcription factor of Treg cells, Forkhead box P3 (Foxp3) strongly regulates Treg function and plasticity. Because of this, considerable research efforts have been directed at elucidating the mechanisms controlling Foxp3 and its co-regulators. Such work is not only advancing our understanding on Treg cell biology, but also uncovering novel targets for clinical manipulation in autoimmune diseases, organ transplantation, and tumor therapies. Recently, many studies have explored the post-translational regulation of Foxp3, which have shown that acetylation, phosphorylation, glycosylation, methylation, and ubiquitination are important for determining Foxp3 function and plasticity. Additionally, some of these targets have been implicated to have great therapeutic values. In this review, we will discuss emerging evidence of post-translational regulations on Foxp3 in Treg cells and their exciting therapeutic applications.


2021 ◽  
Vol 12 ◽  
Author(s):  
Julianna Blagih ◽  
Marc Hennequart ◽  
Fabio Zani

Regulatory T cells (Tregs) are essential for mitigating inflammation. Tregs are found in nearly every tissue and play either beneficial or harmful roles in the host. The availability of various nutrients can either enhance or impair Treg function. Mitochondrial oxidative metabolism plays a major role in supporting Treg differentiation and fitness. While Tregs rely heavily on oxidation of fatty acids to support mitochondrial activity, they have found ways to adapt to different tissue types, such as tumors, to survive in competitive environments. In addition, metabolic by-products from commensal organisms in the gut also have a profound impact on Treg differentiation. In this review, we will focus on the core metabolic pathways engaged in Tregs, especially in the context of tissue nutrient environments, and how they can affect Treg function, stability and differentiation.


2021 ◽  
Author(s):  
Yousra Ajouaou ◽  
Abdulkader Azouz ◽  
Anaelle Taquin ◽  
Hind Hussein ◽  
Fabienne Andris ◽  
...  

The oxygen sensor PHD2 (prolyl hydroxylase domain 2) plays an important role in cell hypoxia adaptation by regulating the stability of HIF proteins (HIF1α and HIF2α) in numerous cell types including T lymphocytes. The role of oxygen sensor on immune cells, in particular on regulatory T cell (Treg) function, has not been fully elucidated. The purpose of our study was to evaluate the role of PHD2 in the regulation of Treg phenotype and function. We demonstrate herein that selective ablation of PHD2 expression in Treg (PHD2ΔTreg mice) leads to a spontaneous systemic inflammatory syndrome, as evidenced by weight loss, development of a rectal prolapse, splenomegaly, shortening of the colon and elevated expression of IFN-γ in the mesenteric lymph nodes, intestine and spleen. PHD2 deficiency in Tregs led to an increased number of activated CD4 conventional T cells expressing an effector/Th1-like phenotype. Concomitantly, the expression of innate-type cytokines such as IL1-β, IL-12p40, IL-12p35 and TNF-α was found to be elevated in peripheral (gut) tissues and spleen. PHD2ΔTreg mice also displayed an enhanced sensitivity to DSS-induced colitis and to toxoplasmosis, suggesting that PHD2-deficient Tregs do not efficiently control inflammatory response in vivo, in particular immune responses characterized by IFN-γ production. Further analysis revealed that Treg dysregulation is largely prevented in PHD2-HIF2α (PHD2-HIF2αΔTreg mice), but not in PHD2-HIF1α (PHD2-HIF1αΔTreg mice) double KOs, suggesting an important and possibly selective role of the PHD2-HIF2α axis in the control of Treg function. Finally, the transcriptomic analysis of PHD2-deficient Tregs revealed an altered expression of several chemokine receptors including CXCR3, a finding corroborated by the altered in vivo localization of PHD2-deficient Tregs in splenic tissues. Collectively, these findings uncover an important role of the PHD2-HIF2α axis in regulatory T cell positioning and trafficking.


2021 ◽  
pp. 152-159
Author(s):  
S. I. Zhukova ◽  
I. D. Kanner ◽  
T. M. Mamontova ◽  
E. M. Shelomentceva ◽  
M. L. Maximov

Autoimmune thyroiditis is an organ-specific autoimmune disease caused by the activation of self-reactive CD4+ T cells. Regulatory T (Treg) cells are a population of T cells that play a central role in immunological tolerance by suppressing selfreactive cells. CD4+ Tregs are divided into thymic (tTreg) and peripheral (pTreg). tTregs perform their functions through cytokine-independent mechanisms, pTregs – through IL-10, TGF-β and IL-35. Tregs perform a protective function against AIT. Studies of Treg level in AIT show different results, in most cases Treg level is increased, and their function is impaired. Treg function in AIT is affected by many factors, such as the level of thyroglobulin, vitamin D etc. Apart from the Treg level itself, the Th17/Treg ratio is also crucial in AIT. Activation of Tregs and modification of the Th17/Treg ratio can be used in AIT treatment.


Sign in / Sign up

Export Citation Format

Share Document