Transient NKG2D Blockade Attenuates Graft-Versus-Host Disease While Preserving Graft-Versus-Leukemia Effects

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3242-3242 ◽  
Author(s):  
Mobin Karimi ◽  
Theresa M Leichner ◽  
Atsushi Satake ◽  
David Raulet ◽  
Taku Kambayashi

Abstract In allogeneic hematopoietic stem cell transplantation (HSCT), identification of mechanisms to control GVHD yet maintain GVL responses is of critical importance. One key effector cell that mediates both GVHD and GVL is the CD8+ T cell, which expands in response to T cell receptor (TCR) stimulation by allogeneic MHC class I molecules during allogeneic HSCT. In addition, co-stimulatory molecules facilitate the TCR-mediated activation process and the effector function of CD8+ T cells. Recent data suggest that NKG2D may play a co-stimulatory role in activation and in augmenting anti-tumor cytotoxic responses of CD8+ T cells. NKG2D is an NK cell-associated receptor that is also expressed on all human CD8+ T cells and on activated/memory mouse CD8+ T cells. NKG2D recognizes a diverse array of MHC-related ligands that are expressed by many tumors and induced on cells under stress such as myeloablative conditioning during HSCT. As the role of NKG2D in allogeneic HSCT is unknown, we hereby investigated the role of NKG2D on CD8+ T cells in a mouse model of GVHD and GVL. Our results show that a large fraction (40-50%) of mouse CD8+ T cells inducibly express NKG2D upon activation by allogeneic MHC in vitro and in vivo. To test the role of NKG2D in GVHD pathogenesis, we employed a major MHC-mismatched mouse model of GVHD involving the transplantation of C57BL/6-derived CD8+ T cells and bone marrow (BM) into lethally irradiated Balb/c mice (B6→Balb/c). Using 3 different approaches to block NKG2D on CD8+ T cells (shRNA-mediated silencing, germline NKG2D deficiency, and antibody blockade), we found that weight loss, clinical score, and survival were significantly improved in transplanted mice with NKG2D blockade. The attenuation in GVHD correlated with a significant reduction in TNFα and IFNγ production, cytotoxicity, and proliferation (BrdU incorporation) by CD8+ T cells. Although CD4+ T cells did not express NKG2D, a protective effect of NKG2D blockade was still observed in GVHD induced by a mixture of CD8+ and CD4+ T cells, albeit to a lesser extent. We next tested the effects of NKG2D on CD8+ T cell-mediated GVL. To this end, irradiated Balb/c mice were transplanted with C57BL/6-derived CD8+ T cells and BM, challenged intravenously with luciferase-positive A20 leukemia cells, and followed by total body imaging of luciferase-expressing cells. Given that NKG2D ligands are constitutively expressed on many tumor cells and plays an important role in their eradication, we predicted that continuous NKG2D blockade would inhibit GVL effects. However, as NKGD ligands are upregulated only transiently on stressed normal tissue, we reasoned that transient NKG2D blockade might be sufficient to attenuate GVHD and allow CD8+ T cells to regain their GVL function. To test this hypothesis, we compared the effect of anti-NKG2D antibody as continuous treatment or as 5-day transient treatment to mice receiving isotype control antibody. As expected, mice that received isotype control antibody cleared the A20 cells but developed severe GVHD. Continuous anti-NKG2D antibody-mediated blockade improved GVHD but also blunted the GVL response leading to increased A20 growth. In contrast, a large proportion of mice transiently treated with anti-NKG2D antibody cleared the A20 cells, while maintaining the attenuated GVHD state. Together, these data support a positive role of NKG2D on CD8+ T cells in mediating GVHD and GVL. Given the transient nature of NKG2D ligand upregulation on stressed tissues, a window of opportunity may exist where transient NKG2D blockade could provide a novel therapeutic strategy for treatment of acute GVHD while preserving the GVL function of CD8+ T cells after allogeneic HSCT. Disclosures: No relevant conflicts of interest to declare.

2006 ◽  
Vol 74 (10) ◽  
pp. 5790-5801 ◽  
Author(s):  
Sonja Lütjen ◽  
Sabine Soltek ◽  
Simona Virna ◽  
Martina Deckert ◽  
Dirk Schlüter

ABSTRACT Toxoplasma gondii induces a persistent central nervous system infection, which may be lethally reactivated in AIDS patients with low CD4 T-cell numbers. To analyze the role of CD4 T cells for the regulation of parasite-specific CD8 T cells, mice were infected with transgenic T. gondii expressing the CD8 T-cell antigen β-galactosidase (β-Gal). Depletion of CD4 T cells prior to infection did not affect frequencies of β-Gal876-884-specific (consisting of residues 876 to 884 of β-Gal) CD8 T cells but resulted in a pronounced reduction of intracerebral β-Gal-specific gamma interferon (IFN-γ)-producing and cytolytic CD8 T cells. After cessation of anti-CD4 treatment a normal T. gondii-specific CD4 T-cell response developed, but IFN-γ production of intracerebral β-Gal-specific CD8 T cells remained impaired. The important supportive role of CD4 T cells for the optimal functional activity of intracerebral CD8 T cells was also observed in mice that had been depleted of CD4 T cells during chronic toxoplasmosis. Reinfection of chronically infected mice that had been depleted of CD4 T cells during either the acute or chronic stage of infection resulted in an enhanced proliferation of β-Gal-specific IFN-γ-producing splenic CD8 T cells. However, reinfection of chronically infected mice that had been depleted of CD4 T cells in the acute stage of infection did not reverse the impaired IFN-γ production of intracerebral CD8 T cells. Collectively, these findings illustrate that CD4 T cells are not required for the induction and maintenance of parasite-specific CD8 T cells but, depending on the stage of infection, the infected organ and parasite challenge infection regulate the functional activity of intracerebral CD8 T cells.


2021 ◽  
Vol 218 (7) ◽  
Author(s):  
Miwa Sasai ◽  
Ji Su Ma ◽  
Masaaki Okamoto ◽  
Kohei Nishino ◽  
Hikaru Nagaoka ◽  
...  

Because of their common signaling molecules, the main T cell receptor (TCR) signaling cascades in CD4+ and CD8+ T cells are considered qualitatively identical. Herein, we show that TCR signaling in CD8+ T cells is qualitatively different from that in CD4+ T cells, since CD8α ignites another cardinal signaling cascade involving phospholipase C β4 (PLCβ4). TCR-mediated responses were severely impaired in PLCβ4-deficient CD8+ T cells, whereas those in CD4+ T cells were intact. PLCβ4-deficient CD8+ T cells showed perturbed activation of peripheral TCR signaling pathways downstream of IP3 generation. Binding of PLCβ4 to the cytoplasmic tail of CD8α was important for CD8+ T cell activation. Furthermore, GNAQ interacted with PLCβ4, mediated double phosphorylation on threonine 886 and serine 890 positions of PLCβ4, and activated CD8+ T cells in a PLCβ4-dependent fashion. PLCβ4-deficient mice exhibited defective antiparasitic host defense and antitumor immune responses. Altogether, PLCβ4 differentiates TCR signaling in CD4+ and CD8+ T cells and selectively promotes CD8+ T cell–dependent adaptive immunity.


2018 ◽  
Vol 115 (18) ◽  
pp. 4749-4754 ◽  
Author(s):  
Eunseon Ahn ◽  
Koichi Araki ◽  
Masao Hashimoto ◽  
Weiyan Li ◽  
James L. Riley ◽  
...  

PD-1 (programmed cell death-1) is the central inhibitory receptor regulating CD8 T cell exhaustion during chronic viral infection and cancer. Interestingly, PD-1 is also expressed transiently by activated CD8 T cells during acute viral infection, but the role of PD-1 in modulating T cell effector differentiation and function is not well defined. To address this question, we examined the expression kinetics and role of PD-1 during acute lymphocytic choriomeningitis virus (LCMV) infection of mice. PD-1 was rapidly up-regulated in vivo upon activation of naive virus-specific CD8 T cells within 24 h after LCMV infection and in less than 4 h after peptide injection, well before any cell division had occurred. This rapid PD-1 expression by CD8 T cells was driven predominantly by antigen receptor signaling since infection with a LCMV strain with a mutation in the CD8 T cell epitope did not result in the increase of PD-1 on antigen-specific CD8 T cells. Blockade of the PD-1 pathway using anti–PD-L1 or anti–PD-1 antibodies during the early phase of acute LCMV infection increased mTOR signaling and granzyme B expression in virus-specific CD8 T cells and resulted in faster clearance of the infection. These results show that PD-1 plays an inhibitory role during the naive-to-effector CD8 T cell transition and that the PD-1 pathway can also be modulated at this stage of T cell differentiation. These findings have implications for developing therapeutic vaccination strategies in combination with PD-1 blockade.


Author(s):  
Maud Wilhelm ◽  
Amandeep Kaur ◽  
Marion Wernli ◽  
Hans H Hirsch

Abstract Background BK polyomavirus (BKPyV) remains a significant cause of premature kidney transplant failure. In the absence of effective antivirals, current treatments rely on reducing immunosuppression to regain immune control over BKPyV replication. Increasing BKPyV-specific CD8 T cells correlate with clearance of BKPyV DNAemia in kidney transplant patients. We characterized a novel approach for expanding BKPyV-specific CD8 T cells in vitro using 27mer-long synthetic BKPyV peptides, different types of antigen-presenting cells, and CD4 T cells. Methods Langerhans cells and immature or mature monocyte-derived dendritic cells (Mo-DCs) were generated from peripheral blood mononuclear cells of healthy blood donors, pulsed with synthetic peptide pools consisting of 36 overlapping 27mers (27mP) or 180 15mers (15mP). BKPyV-specific CD8 T-cell responses were assessed by cytokine release assays using 15mP or immunodominant 9mers. Results BKPyV-specific CD8 T cells expanded using 27mP and required mature Mo-DCs (P = .0312) and CD4 T cells (P = .0156) for highest responses. The resulting BKPyV-specific CD8 T cells proliferated, secreted multiple cytokines including interferon γ and tumor necrosis factor α, and were functional (CD107a+/PD1–) and cytotoxic. Conclusions Synthetic 27mP permit expanding BKPyV-specific CD8 T-cell responses when pulsing mature Mo-DCs in presence of CD4 T cells, suggesting novel and safe approaches to vaccination and adoptive T-cell therapies for patients before and after kidney transplantation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2222-2222
Author(s):  
Maarten L. Zandvliet ◽  
J.H. Frederik Falkenburg ◽  
Inge Jedema ◽  
Roelof Willemze ◽  
Henk-Jan Guchelaar ◽  
...  

Abstract Reactivation of adenovirus (ADV), cytomegalovirus (CMV) and Epstein-Barr virus (EBV) can cause serious morbidity and mortality during the prolonged period of immune deficiency following allogeneic stem cell transplantation. It has been shown that adoptive transfer of donor-derived virus-specific T cells can be a successful strategy to control viral reactivation. To provide safe and effective anti-viral immunotherapy, we aimed to generate combined CD8+ and CD4+ T cell lines with high specificity for a broad range of viral epitopes. Isolation by the IFNg capture assay of virus-specific T cells that produce IFNg upon activation allows the generation of highly specific T cell lines without the need for extensive culture. However, it has been recently shown that specific upregulation of the co-stimulatory molecule CD137 upon antigen-specific activation of CD8+ and CD4+ T cells can also be used for isolation. We therefore analyzed IFNg production and CD137 expression by CD8+ and CD4+ T cells upon incubation of peripheral blood mononuclear cells (PBMC) from seropositive donors with peptides corresponding to 17 defined MHC class I restricted minimal epitopes from 10 different ADV, CMV, EBV and influenza (FLU) proteins, and 15-mer or 30-mer peptides containing MHC class II restricted epitopes from CMV pp65 or ADV hexon. Using tetramer and intracellular IFNg staining we first determined the fraction of CD8+ T cells that produced IFNg upon activation with the minimal epitopes. Specific IFNg production was observed for 58–100% of tetramer+ CD8+ T cells specific for CMV pp65 (n=6), and 83% for FLU (n=1), but only 18–58% for CMV pp50 (n=3) or IE-1 (n=3), 4–91% for EBV latent (n=3) and lytic (n=3) epitopes, and 41–63% for ADV hexon (n=2). In contrast to the variation in the fraction of IFNg-producing cells, we observed homogeneous upregulation of CD137 by the virus-specific tetramer+ T cell populations upon activation. In 2 cases where no CD137 expression by tetramer+ T cells could be detected, no IFNg production was observed either. These data suggest that the majority of CD8+ T cells specific for CMV pp65 or FLU can be isolated on basis of IFNg production, but only part of CD8+ T cell populations specific for other viral proteins, while complete virus-specific CD8+ T cell populations may be isolated on basis of CD137 expression. Activation of CD4+ T cells specific for CMV pp65 or ADV hexon with 15-mer or 30-mer peptides induced both specific IFNg production and CD137 expression. To investigate whether multiple virus-specific T cell populations could be isolated simultaneously, we next determined the kinetics of IFNg production after activation with defined MHC class I epitopes or peptides containing MHC class II epitopes. CMV- and EBV-specific CD8+ T cells and CMV-specific CD4+ T cells showed a rapid induction of IFNg production, which peaked after 4 hours and decreased thereafter. In contrast, ADV- and FLU-specific CD8+ T cells and ADV-specific CD4+ T cells, predominantly having a more early differentiation phenotype (CD27+CD28+) compared to CMV- and EBV-specific T cells, showed peak IFNg production after 8 hours that continued for more than 48 hours. This difference in phenotype and IFNg kinetics may suggest that the persistent and frequent presentation of CMV and EBV epitopes in vivo, in contrast to an intermittent exposure to ADV and FLU epitopes, drives differentiation and shapes the kinetics of the IFNg response of specific T cells. Kinetic analysis of CD137 expression showed uniform upregulation by virus-specific CD8+ T cell populations from day 1 to day 4 after activation, which peaked at day 2, suggesting that this may be the optimal time point for CD137-based isolation. In a limited number of experiments, virus-specific CD8+ and CD4+ T cells could be isolated based on CD137 expression within the same timeframe. These data indicate that virus-specific T cell populations can be more efficiently isolated at one time point on basis of CD137 expression than on basis of IFNg production, due to differences in IFNg kinetics. In conclusion, this study shows that T cell lines generated by CD137 isolation may comprise a significant number of virus-specific T cells which do not produce IFNg, but may have other effector functions. Furthermore, CD137-based enrichment may be more robust and allows the efficient simultaneous isolation of multiple virus-specific T cell populations due to uniform kinetics of CD137 expression.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2974-2974
Author(s):  
Xiaofan Li ◽  
Wei He ◽  
Ruishu Deng ◽  
Can Liu ◽  
Miao Wang ◽  
...  

Abstract Abstract 2974 Alloreactive donor CD8+ T cells facilitate engraftment and mediate graft versus leukemia (GVL) effects but also cause graft versus host disease (GVHD) in murine and human recipients after allogeneic hematopoietic cell transplantation (HCT). B7-H1 (PD-L1) expression by antigen-presenting cells has an important role in tolerizing activated T cells by binding to PD-1. We and others previously reported that disruption of binding between B7-H1 and PD-1 augments acute GVHD. Parenchymal cells do not usually express B7-H1 but can be induced by inflammatory cytokines (i.e. IFN-g) to express B7-H1. The role of B7-H1 expression by parenchymal tissue cells in regulating the expansion and persistence of donor CD8+ cells in tissues of mice with GVHD has not yet been evaluated. In the current studies, we evaluated the role of B7-H1 expression by GVHD target tissues in regulating donor CD8+ T cell function in 3 different experimental GVHD systems, using in vivo bioluminescent imaging (BLI), in vivo BrdU-labeling, and in vitro proliferation assays. The first system evaluated the role of B7-H1 expression in TBI-conditioned recipients. In these recipients, injected donor CD8+ T cells showed two waves of expansion that correlated with two phases of clinical GVHD. The first wave of donor CD8+ T cell expansion was associated with upregulated expression of B7-H1 in GVHD target tissues and only weak clinical GVHD. The second wave of donor CD8+ T cell expansion was associated with loss of B7-H1 expression, vigorous donor CD8+ T proliferation and expansion in the GVHD target tissues, and lethal GVHD. In a gain-of-function experiment, B7-H1 expression was induced in hepatocytes by hydrodynamic injection of B7-H1 cDNA during the second wave of T cell expansion in mice with GVHD; this subsequently decreased T cell expansion in the liver and ameliorated GVHD. The second system evaluated the role of B7-H1 expression in anti-CD3-conditioned recipients. In wild-type recipients, injected donor CD8+ T cells had only a single wave of expansion, and the mice had no signs of GVHD. B7-H1 expression by tissue cells (i.e. hepatocytes) was up-regulated, and the tissue infiltrating donor CD8+ T cells were anergic. In B7-H1−/− recipients, injected donor CD8+ T cells proliferated vigorously in GVHD target tissues and caused lethal GVHD.The third system evaluated the role of B7-H1 in unconditioned Rag-2−/− recipients after administration of blocking anti-B7-H1 and in the B7-H1−/−Rag-2−/− chimeras with B7-H1 sufficient Rag-2−/− bone marrow cells, in which B7-H1 deficiency was only in tissue parenchymal cells. Both blockade of B7-H1 and B7-H1 deficiency in parenchymal cells resulted in vigorous donor CD8+ T proliferation in GVHD target tissues and caused lethal GVHD. Taken together, these results show that expression of B7-H1 in GVHD target tissue parenchymal cells plays an important role in regulating the proliferation of infiltrating donor CD8+ T cells and preventing the persistence of GVHD. Our studies also indicate that TBI but not anti-CD3 conditioning can lead to loss of GVHD target tissue cell expression of B7-H1 and persistence of GVHD. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3255-3255
Author(s):  
Nicholas Leigh ◽  
Guanglin Bian ◽  
Wei Du ◽  
George L. Chen ◽  
Hong Liu ◽  
...  

Abstract Graft versus tumor (GVT) effect is the desired and integral outcome for successful allogeneic bone marrow transplantation (allo-BMT) for cancer patients. This effect is dependent on T cell mediated recognition and elimination of residual host tumor cells present after allo-BMT. T cell killing is mediated primarily via three pathways: perforin/granzymes, Fas/FasL, and cytotoxic cytokines. Recent work from our lab has revealed a detrimental role for granzyme B (GzmB) in GVT effect due to its role in activation induced cell death (AICD) of CD8+ T cells. As a result, GzmB-/- CD8+ T cells exhibited higher expansion after allo-BMT and subsequently provided better tumor control. Our current study sought to determine the role of perforin (Prf1) in GVT effect mediated by both CD4+ and CD8+ T cells. Using the MHC-mismatched C57BL/6 (H-2b) to BALB/c (H-2d) allo-BMT model, we first confirmed previous findings that when transplanting CD8+ T cells along with T cell depleted (TCD) BM cells, donor CD8+ T cells require Prf1 to mediate GVT effect against allogeneic A20 lymphoma (Fig 1A, Prf1-/- (n=4) vs WT (n=4), *P<0.05). In addition, our data suggest that Prf1 is also required for CD4+ T cells to effectively mediate GVT effect against A20, as transplant with Prf1-/- CD4+CD25- T cells does not control tumor growth as well as WT controls (Fig 1B). Our previous work showed that GzmB deficiency allows for less AICD and subsequently more CD8+ T cell expansion. New data now show a similar effect for Prf1 in CD8+ T cell accumulation, as Prf1-/- CD8+ T cells outcompete WT CD8+ T cells (CD45.1+) when these two genotypes are mixed in equal numbers and transplanted into tumor bearing BALB/c mice (n=5/time point, *P=0.02 day 9)(Fig 1C). This competitive advantage was due to less AICD in the Prf1-/- CD8+ T cells. However, Prf1 appears to be required for efficient GVT activity, because the higher number of Prf1-/- CD8+ T cells are still less capable than WT counterparts in controlling tumor growth. We next tested the effect of Prf1 in AICD in CD4+CD25- T cells, and again co-transplanted WT CD45.1+ and Prf1-/- CD4+CD25- T cells into tumor bearing mice for a competition assay. Unexpectedly, WT CD4+CD25- T cells accumulate to significantly higher numbers when in direct competition with Prf1-/- CD4+CD25- T cells (n=4/time point, **,P<0.01)(Fig 1D). When we measured apoptotic cells with Annexin V staining, we found that WT CD4+CD25- T cells still had significantly more AICD (Prf1-/- 38.3 ± 4.2% vs. WT 48.1 ± 5.1%, P<0.01 on day 7 post-BMT; Prf1-/- 12.7 ± 1.0% vs. WT 18.1 ± 3.4%, P<0.03 on day 9 post-BMT). This result suggests that while Prf1 has an important role in AICD, it may also play a role in another feature of CD4+ T cell biology. We then explored the hypothesis that may Prf1 promote CD4+ T cell proliferation by evaluating Hoescht staining on day 9 post-BMT. Preliminary results suggest that Prf1 may enhance T cell proliferation, as Prf1-/- CD4+ T cells have less actively dividing cells at this time point. Therefore, Prf1 appears to have a surprising role after allo-BMT in sustaining T cell expansion for CD4+ T cells, but not for CD8+ T cells. Another factor influencing GVT effect may be T cell phenotype. Our previous work with CD8+ T cells suggests that more effector memory (CD62LLOWCD44HIGH) T cells accumulate in the absence of GzmB, and that GzmB-/- CD8+ T cells exhibited higher GVT activity than WT controls. We now found that while Prf1-/- CD4+ T cells also skewed towards the effector memory phenotype (CD62LLOWCD44HIGH), loss of Prf1 still reduced the ability of CD4+ T cells to control tumor growth in this model of allo-BMT. In summary, our results suggest that Prf1 plays an important role in GVT responses mediated not only by CD8+ T cells but also by CD4+ T cells, which were shown in previous literature to mainly utilize Fas ligand and cytokine systems to mediate GVT activity. In addition, Prf1 can cause AICD to both CD4+ and CD8+ T cells after allo-BMT. While Prf1-induced AICD reduces CD8+ T cell expansion, Prf1 appears to play a previously unrecognized role enhancing CD4+ T cell proliferation via an unidentified mechanism. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3822-3822
Author(s):  
Mobin Karimi ◽  
Martha Jordon ◽  
Taku Kambayashi

Abstract In allogeneic hematopoietic stem cell transplantation (HSCT), devising new strategies to separate GVHD and GVL responses is of critical importance. However, this is a difficult task, as GVHD and GVL rely on the same recognition of allogeneic MHC by donor-derived T cells. CD8+ T cells are key effector cells that mediate both GVHD and GVL. In mouse models of allogeneic HSCT, the infusion of donor-derived CD8+ T cells eliminates tumor growth but also causes severe GVHD. The activation of CD8+ T cells can be potentially manipulated by perturbing the signaling pathways downstream of the T cell receptor (TCR). TCR signaling depends on the formation of a proximal multimolecular complex, which is nucleated by adaptor proteins such as SLP-76. The phosphorylation of the Y145 residue of SLP-76 is critical for activation of the downstream enzyme PLCg1. As such, a YàF mutation at Y145 of SLP-76 (Y145F) causes decreased TCR-mediated signaling and attenuated T cell function. Here, we investigated how the SLP-76 Y145F mutation in CD8+T cells may impact GVHD and GVL responses in a mouse model of allogeneic HSCT. We employed a major MHC-mismatch mouse model of GVHD involving the transplantation of C57BL/6 (B6)-derived bone marrow (BM) into lethally irradiated Balb/c mice (B6àBalb/c). BM-transplanted mice were also injected with FACS-sorted CD8+ T cells either B6 wildtype (WT) mice or Y145F mice. Recipients of Y145F CD8+ T cells showed significantly (p<0.001) less weight loss, lower clinical score, and improved survival compared to mice injected with WT CD8+ T cells. Next, to determine whether the Y145F CD8+ T cells could mediate GVL effects, BM-transplanted Balb/c mice were additionally challenged intravenously with 1 x 105 luciferase-positive A20 leukemia cells. As expected, BM-transplanted Balb/c mice succumbed from A20 tumor growth, whereas mice injected with WT CD8+ T cells cleared the tumor but developed GVHD. Surprisingly, mice receiving Y145F CD8+ T cells eradicated the leukemic cells but did not develop GVHD. These data suggest that the Y145F mutation in CD8+T cells may be able to separate GVHD from GVL effects. In addition to defective TCR signaling observed in peripheral T cells of Y145F mice, a majority of Y145F KI CD8+ T cells adopt a memory-like CD44hi phenotype through exposure to high levels of IL-4 produced in the thymus of these mice. To test whether the CD44hi CD8+ T cell phenotype was necessary and/or sufficient for the separation of GVHD and GVL effects, BM-transplanted Balb/c mice were injected with FACS-sorted CD44hi or CD44lo CD8+ T cells from WT or Y145F KI mice and challenged with A20 leukemia cells. While BM-transplanted mice receiving CD44hi CD8+ T cells from Y145F mice displayed intact GVL responses without causing GVHD, mice injected with CD44lo CD8+ T cells from Y145F mice displayed impaired ability to clear the tumor cells. Moreover, recipients of CD44hi or CD44lo CD8+ T cells from WT mice cleared the tumor but exhibited severe GVHD. These findings were corroborated with data obtained with an inducible system, whereby CD8+ T cells are affected by the Y145F mutation only after full maturation and thus do not display a CD44hi phenotype (Y145F conditional knock-in mice). Bone marrow-transplanted recipients receiving Y145F conditional knock-in CD8+ T cells developed GVHD and exhibited an attenuated GVL response, suggesting that the Y145F mutation needed to be present during T cell development. Together, these data suggest that either the Y145F mutation or CD44hi phenotype alone in CD8+T cells is insufficient to separate GVHD from GVT. Our data demonstrate that perturbation of the TCR signaling pathway downstream of Y145 of SLP-76 in CD8+ T cells results in separation of GVHD from GVL effects. Experiments to mechanistically test how the Y145F signaling mutation synergizes with the CD44hi phenotype of CD8+ T cells to allow for the separation of the GVHD and GVL effects are currently underway. Our novel and unexpected finding could lead to a novel therapeutic strategy for treatment of acute GVHD after allogeneic HSCT. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 195-202 ◽  
Author(s):  
Masaki Tateyama ◽  
Naoki Oyaizu ◽  
Thomas W. McCloskey ◽  
Soe Than ◽  
Savita Pahwa

CD4 molecules serve as coreceptors for the T-cell receptor (TCR)/CD3 complex that are engaged coordinately with TCR and facilitate antigen-specific T-cell activation leading to interleukin 2 (IL-2) production and proliferation. However, cross-ligation of CD4 molecules prior to TCR stimulation has been shown to prime CD4 T cells to undergo apoptosis. Although in vivo and in vitro experiments have implicated the involvement of Fas/FasL interaction in this CD4 cross-linking (CD4XL)-induced apoptosis, detailed mechanisms to account for cell death induction have not been elucidated. In the present study, we demonstrate that CD4XL in purified T cells not only led to Fas up-regulation but also primed CD4 T cells to express FasL upon CD3 stimulation and rendered the T cells susceptible to Fas-mediated apoptosis. Notably, in addition to CD4+ T cells, CD4XL-induced sensitization for apoptosis was observed in CD8+ T cells as well and was associated with Bcl-x down-modulation. Both CD4 and CD8 T-cell subsets underwent apoptosis following cell–cell contact with FasL+ CD4 T cells. CD28 costimulation abrogated CD4XL/CD3-induced apoptosis with restoration of IL-2 production and prevented Bcl-x down-modulation. As CD4 molecules are the primary receptors for human immunodeficiency virus 1 (HIV-1), we conclude that HIV-1 envelope mediated CD4XL can lead to the generation of FasL-expressing CD4+ T cells that can lead to apoptosis of CD4 as well as CD8 T cells. These findings implicate a novel mechanism for CD8 T-cell depletion in HIV disease.


Blood ◽  
2008 ◽  
Vol 112 (6) ◽  
pp. 2400-2410 ◽  
Author(s):  
Yoshimi Enose-Akahata ◽  
Unsong Oh ◽  
Christian Grant ◽  
Steven Jacobson

AbstractCD8+ T cells contribute to central nervous system inflammation in human T-cell lymphotropic virus type I (HTLV-I)–associated myelopathy/tropical spastic paraparesis (HAM/TSP). We analyzed CD8+ T-cell dysfunction (degranulation and IFN-γ production) and have demonstrated that CD8+ T cells of patients with HAM/TSP (HAM/TSP patients) spontaneously degranulate and express IFN-γ in ex vivo unstimulated culture. CD8+ T cells of HTLV-I asymptomatic carriers and healthy donors did not. Spontaneous degranulation was detected in Tax11-19/HLA-A*201 tetramer+ cells, but not in CMV pp65 tetramer+ cells. Interestingly, degranulation and IFN-γ production in CD8+ T cells was induced by coculture with autologous CD14+ cells, but not CD4+ T cells, of HAM/TSP patients, which correlated with proviral DNA load in CD14+ cells of infected patients. Moreover, the expression of IL-15, which induced degranulation and IFN-γ production in infected patients, was enhanced on surface of CD14+ cells in HAM/TSP patients. Blockade of MHC class I and IL-15 confirmed these results. Thus, CD8+ T-cell dysregulation was mediated by both virus infection and enhanced IL-15 on CD14+ cells in HAM/TSP patients. Despite lower viral expression than in CD4+ T cells, HTLV-I–infected or –activated CD14+ cells may be a heretofore important but under recognized reservoir particularly in HAM/TSP patients.


Sign in / Sign up

Export Citation Format

Share Document