scholarly journals Proteasomal inhibition triggers viral oncoprotein degradation via autophagy-lysosomal pathway

2020 ◽  
Vol 16 (2) ◽  
pp. e1008105 ◽  
Author(s):  
Chandrima Gain ◽  
Samaresh Malik ◽  
Shaoni Bhattacharjee ◽  
Arijit Ghosh ◽  
Erle S. Robertson ◽  
...  
2019 ◽  
Author(s):  
Chandrima Gain ◽  
Samaresh Malik ◽  
Shaoni Bhattacharjee ◽  
Arijit Ghosh ◽  
Erle S. Robertson ◽  
...  

AbstractEpstein-Barr virus (EBV) nuclear oncoprotein EBNA3C is essential for B-cell transformation and development of several B-cell lymphomas particularly those are generated in an immuno-compromised background. EBNA3C recruits ubiquitin-proteasome machinery for deregulating multiple cellular oncoproteins and tumor suppressor proteins. Although EBNA3C is found to be ubiquitinated at its N-terminal region and interacts with 20S proteasome, the viral protein is surprisingly stable in growing B-lymphocytes. EBNA3C can also circumvent autophagy-lysosomal mediated protein degradation and subsequent antigen presentation for T-cell recognition. Recently, we have shown that EBNA3C enhances autophagy, which serve as a prerequisite for B-cell survival particularly under growth deprivation conditions. We now demonstrate that proteasomal inhibition by MG132 induces EBNA3C degradation both in EBV transformed B-lymphocytes and ectopic-expression systems. Interestingly, MG132 treatment promotes degradation of two EBNA3 family oncoproteins – EBNA3A and EBNA3C, but not the viral tumor suppressor protein EBNA3B. EBNA3C degradation induced by proteasomal inhibition is partially blocked when autophagy-lysosomal pathway is inhibited. In response to proteasomal inhibition, EBNA3C is predominantly K63-linked polyubiquitinated, colocalized with the autophagy-lsyosomal fraction in the cytoplasm and participated within p62-LC3B complex, which facilitates autophagy-mediated degradation. We further show that the degradation signal is present at the first 50 residues of the N-terminal region of EBNA3C. Proteasomal inhibition reduces the colony formation ability of this important viral oncoprotein, increases transcriptional activation of both latent and lytic gene expression and induces viral reactivation from EBV transformed B-lymphocytes. Altogether, this study offers rationale to use proteasome inhibitors as potential therapeutic strategy against multiple EBV associated B-cell lymphomas, where EBNA3C is expressed.Author SummaryEpstein-Barr virus (EBV) establishes latent infection in B-lymphocytes and is associated with a number of human malignancies, both of epithelial and lymphoid origin. EBV encoded EBNA3 family of nuclear latent antigens comprising of EBNA3A, EBNA3B, and EBNA3C are unique to immunoblastic lymphomas. While EBNA3A and EBNA3C are involved in blocking many important tumor suppressive mechanisms, EBNA3B exhibits tumor suppressive functions. Although EBNA3 proteins, in particular EBNA3C, interact with and employ different protein degradation machineries to induce B-cell lymphomagenesis, these viral proteins are extremely stable in growing B-lymphocytes. To this end, we now demonstrate that proteasomal inhibition leads to specifically degradation of oncogenic EBNA3A and EBNA3C proteins, whereas EBNA3B remains unaffected. Upon proteasomal inhibition, EBNA3C degradation occurs via autophagy-lysosomal pathway, through labeling with K63-linked polyubiquitination and participating in p62-LC3B complex involved in ubiquitin-mediated autophagy substrate selection and degradation through autolysosomal process. We also demonstrate that the N-terminal domain is responsible for autophgy-lysosomal mediated degradation, while the C-terminal domain plays a crucial role in cytoplasmic localization. Fascinatingly, while proteasomal inhibition reduces EBNA3C’s oncogenic property, it induces both latent and lytic gene expressions and promotes viral reactivation from EBV transformed B-lymphocytes. This is the first report which demonstrates a viral oncoprotein degrades through autophagy-lysosomal pathway upon proteasomal inhibition. In sum, the results promise development of novel strategies specifically targeting proteolytic pathway for the treatment of EBV associated B-cell lymphomas, particularly those are generated in immunocompromised individuals.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 739
Author(s):  
Taeju Park

Crk and CrkL are cellular counterparts of the viral oncoprotein v-Crk. Crk and CrkL are overexpressed in many types of human cancer, correlating with poor prognosis. Furthermore, gene knockdown and knockout of Crk and CrkL in tumor cell lines suppress tumor cell functions, including cell proliferation, transformation, migration, invasion, epithelial-mesenchymal transition, resistance to chemotherapy drugs, and in vivo tumor growth and metastasis. Conversely, overexpression of tumor cells with Crk or CrkL enhances tumor cell functions. Therefore, Crk and CrkL have been proposed as therapeutic targets for cancer treatment. However, it is unclear whether Crk and CrkL make distinct or overlapping contributions to tumor cell functions in various cancer types because Crk or CrkL have been examined independently in most studies. Two recent studies using colorectal cancer and glioblastoma cells clearly demonstrated that Crk and CrkL need to be ablated individually and combined to understand distinct and overlapping roles of the two proteins in cancer. A comprehensive understanding of individual and overlapping roles of Crk and CrkL in tumor cell functions is necessary to develop effective therapeutic strategies. This review systematically discusses crucial functions of Crk and CrkL in tumor cell functions and provides new perspectives on targeting Crk and CrkL in cancer therapy.


2016 ◽  
Vol 103 ◽  
pp. 29-39 ◽  
Author(s):  
Ka C. Lee ◽  
Rebecca L. Bramley ◽  
Ian G. Cowell ◽  
Graham H. Jackson ◽  
Caroline A. Austin

Blood ◽  
2011 ◽  
Vol 117 (13) ◽  
pp. 3609-3612 ◽  
Author(s):  
Andrea K. Kress ◽  
Martina Kalmer ◽  
Aileen G. Rowan ◽  
Ralph Grassmann ◽  
Bernhard Fleckenstein

AbstractOncogenic transformation of CD4+ T cells by human T-cell lymphotropic virus type 1 (HTLV-1) is understood as the initial step to adult T-cell leukemia/lymphoma, a process that is mainly initiated by perturbation of cellular signaling by the viral Tax oncoprotein, a potent transcriptional regulator. In search of novel biomarkers with relevance to oncogenesis, we identified the tumor marker and actin-bundling protein Fascin (FSCN1) to be specifically and strongly up-regulated in both HTLV-1–transformed and adult T-cell leukemia/lymphoma patient-derived CD4+ T cells. Fascin is important for migration and metastasis in various types of cancer. Here we report that a direct link can exist between a single viral oncoprotein and Fascin expression, as the viral oncoprotein Tax was sufficient to induce high levels of Fascin. Nuclear factor-κB signals were important for Tax-mediated transcriptional regulation of Fascin in T cells. This suggests that Fascin up-regulation by Tax contributes to the development of HTLV-1–associated pathogenesis.


2012 ◽  
Vol 10 (1) ◽  
pp. 5 ◽  
Author(s):  
Kristin Katsch ◽  
Sarah de Jong ◽  
Jens-Christian Albrecht ◽  
Julia Steger ◽  
Harald Genth ◽  
...  

EMBO Reports ◽  
2017 ◽  
Vol 18 (9) ◽  
pp. 1671-1671 ◽  
Author(s):  
Young Dong Yoo ◽  
Dae‐Hee Lee ◽  
Hyunjoo Cha‐Molstad ◽  
Hyungsin Kim ◽  
Su Ran Mun ◽  
...  

2018 ◽  
Vol 234 (4) ◽  
pp. 3170-3179 ◽  
Author(s):  
Elisa Mazzoni ◽  
Francesca Frontini ◽  
John Charles Rotondo ◽  
Nunzia Zanotta ◽  
Arianna Fioravanti ◽  
...  

2015 ◽  
Vol 89 (18) ◽  
pp. 9427-9439 ◽  
Author(s):  
Els van der Meijden ◽  
Siamaque Kazem ◽  
Christina A. Dargel ◽  
Nick van Vuren ◽  
Paul J. Hensbergen ◽  
...  

ABSTRACTThe polyomavirus tumor (T) antigens play crucial roles in viral replication, transcription, and cellular transformation. They are encoded by partially overlapping open reading frames (ORFs) located in the early region through alternative mRNA splicing. The T expression pattern of the trichodysplasia spinulosa-associated polyomavirus (TSPyV) has not been established yet, hampering further study of its pathogenic mechanisms and taxonomic relationship. Here, we characterized TSPyV T antigen expression in human cell lines transfected with the TSPyV early region. Sequencing of T antigen-encoded reverse transcription-PCR (RT-PCR) products revealed three splice donor and acceptor sites creating six mRNA splice products that potentially encode the antigens small T (ST), middle T (MT), large T (LT), tiny T, 21kT, and alternative T (ALTO). Except for 21kT, these splice products were also detected in skin of TSPyV-infected patients. At least three splice products were confirmed by Northern blotting, likely encoding LT, MT, ST, 21kT, and ALTO. Protein expression was demonstrated for LT, ALTO, and possibly MT, with LT detected in the nucleus and ALTO in the cytoplasm of transfected cells. Splice site and start codon mutations indicated that ALTO is encoded by the same splice product that encodes LT and uses internal start codons for initiation. The genuineness of ALTO was indicated by the identification of acetylated N-terminal ALTO peptides by mass spectrometry. Summarizing, TSPyV exhibits an expression pattern characterized by both MT and ALTO expression, combining features of rodent and human polyomaviruses. This unique expression pattern provides important leads for further study of polyomavirus-related disease and for an understanding of polyomavirus evolution.IMPORTANCEThe human trichodysplasia spinulosa-associated polyomavirus (TSPyV) is distinguished among polyomaviruses for combining productive infection with cell-transforming properties. In the research presented here, we further substantiate this unique position by indicating expression of both middle T antigen (MT) and alternative T antigen (ALTO) in TSPyV. So far, none of the human polyomaviruses was shown to express MT, which is considered the most important viral oncoprotein of rodent polyomaviruses. Coexpression of ALTO and MT, which involves a conserved, recently recognized overlapping ORF subject to positive selection, has not been observed before for any polyomavirus. As a result of our findings, this study provides valuable new insights into polyomavirus T gene use and expression. Obviously, these insights will be instrumental in further study and gaining an understanding of TSPyV pathogenicity. More importantly, however, they provide important leads with regard to the interrelationship, functionality, and evolution of polyomaviruses as a whole, indicating that TSPyV is a suitable model virus to study these entities further.


Sign in / Sign up

Export Citation Format

Share Document