scholarly journals The Barley stripe mosaic virus γb protein promotes viral cell-to-cell movement by enhancing ATPase-mediated assembly of ribonucleoprotein movement complexes

2020 ◽  
Vol 16 (7) ◽  
pp. e1008709 ◽  
Author(s):  
Zhihao Jiang ◽  
Kun Zhang ◽  
Zhaolei Li ◽  
Zhenggang Li ◽  
Meng Yang ◽  
...  
2008 ◽  
Vol 82 (10) ◽  
pp. 4991-5006 ◽  
Author(s):  
Hyoun-Sub Lim ◽  
Jennifer N. Bragg ◽  
Uma Ganesan ◽  
Diane M. Lawrence ◽  
Jialin Yu ◽  
...  

ABSTRACT Barley stripe mosaic virus (BSMV) encodes three movement proteins in an overlapping triple gene block (TGB), but little is known about the physical interactions of these proteins. We have characterized a ribonucleoprotein (RNP) complex consisting of the TGB1 protein and plus-sense BSMV RNAs from infected barley plants and have identified TGB1 complexes in planta and in vitro. Homologous TGB1 binding was disrupted by site-specific mutations in each of the first two N-terminal helicase motifs but not by mutations in two C-terminal helicase motifs. The TGB2 and TGB3 proteins were not detected in the RNP, but affinity chromatography and yeast two-hybrid experiments demonstrated that TGB1 binds to TGB3 and that TGB2 and TGB3 form heterologous interactions. These interactions required the TGB2 glycine 40 and the TGB3 isoleucine 108 residues, and BSMV mutants containing these amino acid substitution were unable to move from cell to cell. Infectivity experiments indicated that TGB1 separated on a different genomic RNA from TGB2 and TGB3 could function in limited cell-to-cell movement but that the rates of movement depended on the levels of expression of the proteins and the contexts in which they are expressed. Moreover, elevated expression of the wild-type TGB3 protein interfered with cell-to-cell movement but movement was not affected by the similar expression of a TGB3 mutant that fails to interact with TGB2. These experiments suggest that BSMV movement requires physical interactions of TGB2 and TGB3 and that substantial deviation from the TGB protein ratios expressed by the wild-type virus compromises movement.


2001 ◽  
Vol 75 (18) ◽  
pp. 8712-8723 ◽  
Author(s):  
Diane M. Lawrence ◽  
A. O. Jackson

ABSTRACT We have recently used a green fluorescent protein (GFP) fusion to the γb protein of Barley stripe mosaic virus (BSMV) to monitor cell-to-cell and systemic virus movement. The γb protein is involved in expression of the triple gene block (TGB) proteins encoded by RNAβ but is not essential for cell-to-cell movement. The GFP fusion appears not to compromise replication or movement substantially, and mutagenesis experiments demonstrated that the three most abundant TGB-encoded proteins, βb (TGB1), βc (TGB3), and βd (TGB2), are each required for cell-to-cell movement (D. M. Lawrence and A. O. Jackson, Mol. Plant Pathol. 2:65–75, 2001). We have now extended these analyses by engineering a fusion of GFP to TGB1 to examine the expression and interactions of this protein during infection. BSMV derivatives containing the TGB1 fusion were able to move from cell to cell and establish local lesions in Chenopodium amaranticolor and systemic infections of Nicotiana benthamiana and barley. In these hosts, the GFP-TGB1 fusion protein exhibited a temporal pattern of expression along the advancing edge of the infection front. Microscopic examination of the subcellular localization of the GFP-TGB1 protein indicated an association with the endoplasmic reticulum and with plasmodesmata. The subcellular localization of the TGB1 protein was altered in infections in which site-specific mutations were introduced into the six conserved regions of the helicase domain and in mutants unable to express the TGB2 and/or TGB3 proteins. These results are compatible with a model suggesting that movement requires associations of the TGB1 protein with cytoplasmic membranes that are facilitated by the TGB2 and TGB3 proteins.


Intervirology ◽  
1997 ◽  
Vol 40 (1) ◽  
pp. 1-6 ◽  
Author(s):  
A.G. Solovyev ◽  
D.A. Zelenina ◽  
E.I. Savenkov ◽  
V.Z. Grdzelishvili ◽  
S.Yu. Morozov ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhi-Yong Yan ◽  
Xiao-Jie Xu ◽  
Le Fang ◽  
Chao Geng ◽  
Yan-Ping Tian ◽  
...  

AbstractCoat protein (CP) is required for potyviruses to move and establish a systemic infection in plants. π-stackings formed by aromatic residues play critical roles in maintaining protein stability and functions. As we know, many aromatic residues located in the core region of potyvirus CPs are conserved. However, their roles in potyvirus infection remain largely unknown. Here, through analysis of the three-dimensional model of the tobacco vein banding mosaic virus (TVBMV; genus Potyvirus) CP, 16 aromatic residues were predicated to form π-stackings. The results of transient expression experiments demonstrated that deletion of any of these 16 aromatic residues reduced CP accumulation. Infectivity assays showed that deletion of any of these aromatic residues in the TVBMV infectious clone abolished cell-to-cell movement and reduced replication of the virus. Substitution of Y105 and Y147 individually with non-aromatic residues alanine or glycine reduced CP accumulation, virus replication, and abolished the ability of TVBMV to move intercellularly, while substitution of these two residues individually with aromatic residues phenylalanine or tryptophan, had no or little effect on CP accumulation and TVBMV systemic movement and replication. Similar results were obtained from the CP mutants of watermelon mosaic virus (WMV, genus Potyvirus). Taken together, our results demonstrate that multiple aromatic residues in CP are involved in potyvirus movement by forming π-stackings to maintain CP accumulation.


1999 ◽  
Vol 354 (1383) ◽  
pp. 637-643 ◽  
Author(s):  
Vitaly Citovsky

Cell–to–cell movement of tobacco mosaic virus (TMV) is used to illustrate macromolecular traffic through plant intercellular connections, the plasmodesmata. This transport process is mediated by a specialized viral movement protein, P30. In the initially infected cell, P30 is produced by transcription of a subgenomic RNA derived from the invading virus. Presumably, P30 then associates with a certain proportion of the viral RNA molecules, sequestering them from replication and mediating their transport into neighbouring uninfected host cells. This nucleoprotein complex is targeted to plasmodesmata, possibly via interaction with the host cell cytoskeleton. Prior to passage through a plasmodesma, the plasmodesmal channel is dilated by the movement protein. It is proposed that targeting of P30–TMV RNA complexes to plasmodesmata involves binding to a specific cell wall–associated receptor molecule. In addition, a cell wall–associated protein kinase, phosphorylates P30 at its carboxy–terminus and minimizes P30–induced interference with plasmodesmatal permeability during viral infection.


1972 ◽  
Vol 50 (2) ◽  
pp. 263-267 ◽  
Author(s):  
Z. Polák ◽  
J. T. Slykhuis

Poa semilatent virus (PSLV), which caused chlorosis and rapid death of inoculated wheat, infected a number of grasses susceptible to barley stripe mosaic virus (BSMV); but it also infected Agropyron trachycaulum and Poa palustris which were not susceptible to a barley strain or two oat-infecting strains of BSMV. Conversely BSMV caused local lesions on several species of Chenopodium that did not become infected with PSLV. BSMV protected wheat from infection by PSLV, but PSLV caused only partial protection from BSMV.The normal length and thickness of particles in leaf-dip preparations was 161 × 26 mμ for PSLV and 133 × 25 mμ for BSMV.Serological relationship was not indicated by the Ouchterlony agar double-diffusion test or leaf-dip serology. A distant relationship was shown with the microprecipitin test and the ring interface precipitin test. In cross absorption tests the titers of the antisera to the homologous viruses were not reduced by absorption with the heterologous viruses.PSLV and BSMV appear to be distantly related serotypes.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0126621 ◽  
Author(s):  
Jian Jiao ◽  
Yichun Wang ◽  
Jonathan Nimal Selvaraj ◽  
Fuguo Xing ◽  
Yang Liu

Sign in / Sign up

Export Citation Format

Share Document