False Disease Region Identification From Identity-By-Descent Haplotype Sharing in the Presence of Phenocopies

2006 ◽  
Vol 9 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Stuart Macgregor ◽  
Sara A. Knott ◽  
Peter M. Visscher

AbstractLinkage analysis (either parametric or nonparametric) is commonly applied to identify chromosomal regions using related individuals affected by disease. In complex disease the incomplete relationship between phenotype and genotype can be modeled using a phenocopy parameter, the probability that an individual is affected given they do not carry the disease mutation of interest, and a nonpenetrance parameter, the probability that an individual is not affected given they do carry the disease mutation of interest. If the linkage phase between multiple markers and a putative disease locus is known, then haplotypes carrying the mutation can, in principle, be identified by comparing the chromosome segments that are shared identical-by-descent (IBD) across affected individuals. We consider here the effect of a nonzero phenocopy rate on the linkage peak and hence upon the identification of disease haplotypes that are shared IBD between affected individuals. We show, by theory and computer simulation, that in diseases for which there is a nonzero phenocopy rate, the chromosomal regions identified may not include the true disease locus. We utilize a LOD-1 confidence interval for a widely used nonparametric linkage statistic. We find that in small/moderate samples this confidence interval may be inappropriate. We give specific examples where the phenocopy rates are nonnegligible in some complex diseases. The success of further work to identify the causal mutations underlying the linkage peaks in these diseases will depend on researchers allowing for the presence of phenocopies by examining appropriately wide regions around the initial positive linkage finding.

2005 ◽  
Vol 45 (8) ◽  
pp. 837 ◽  
Author(s):  
M. E. Goddard ◽  
T. H. E. Meuwissen

This paper reviews the causes of linkage disequilibrium and its use in mapping quantitative trait loci. The many causes of linkage disequilibrium can be understood as due to similarity in the coalescence tree of different loci. Consideration of the way this comes about allows us to divide linkage disequilibrium into 2 types: linkage disequilibrium between any 2 loci, even if they are unlinked, caused by variation in the relatedness of pairs of animals; and linkage disequilibrium due to the inheritance of chromosome segments that are identical by descent from a common ancestor. The extent of linkage disequilibrium due to the latter cause can be logically measured by the chromosome segment homozygosity which is the probability that chromosome segments taken at random from the population are identical by descent. This latter cause of linkage disequilibrium allows us to map quantitative trait loci to chromosome regions. The former cause of linkage disequilibrium can cause artefactual quantitative trait loci at any position in the genome. These artefacts can be avoided by fitting the relatedness of animals in the statistical model used to map quantitative trait loci. In the future it may be convenient to estimate this degree of relatedness between individuals from markers covering the whole genome. The statistical model for mapping quantitative trait loci also requires us to estimate the probability that 2 animals share quantitative trait loci alleles at a particular position because they have inherited a chromosome segment containing the quantitative trait loci identical by descent. Current methods to do this all involve approximations. Methods based on concepts of coalescence and chromosome segment homozygosity are useful, but improvements are needed for practical analysis of large datasets. Once these probabilities are estimated they can be used in flexible linear models that conveniently combine linkage and linkage disequilibrium information.


2000 ◽  
Vol 37 (3) ◽  
pp. 850-864 ◽  
Author(s):  
Sharon Browning

Two related individuals are identical by descent at a genetic locus if they share the same gene copy at that locus due to inheritance from a recent common ancestor. We consider idealized continuous identity by descent (IBD) data in which IBD status is known continuously along chromosomes. IBD data contains information about the relationship between the two individuals, and about the underlying crossover processes. We present a Monte Carlo method for calculating probabilities for IBD data. The method is not restricted to Haldane's Poisson process model of crossing-over but may be used with other models including the chi-square, Kosambi renewal and Sturt models. Results of a simulation study demonstrate that IBD data can be used to distinguish between alternative models for the crossover process.


Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1403-1410
Author(s):  
Valeri T Stefanov

Abstract A methodology is introduced for numerical evaluation, with any given accuracy, of the cumulative probabilities of the proportion of genome shared identical by descent (IBD) on chromosome segments by two individuals in a grandparent-type relationship. Programs are provided in the popular software package Maple for rapidly implementing such evaluations in the cases of grandchild-grandparent and great-grandchild–great-grandparent relationships. Our results can be used to identify chromosomal segments that may contain disease genes. Also, exact P values in significance testing for resemblance of either a grandparent with a grandchild or a great-grandparent with a great-grandchild can be calculated. The genomic continuum model, with Haldane's model for the crossover process, is assumed. This is the model that has been used recently in the genetics literature devoted to IBD calculations. Our methodology is based on viewing the model as a special exponential family and elaborating on recent research results for such families.


Author(s):  
Farzad Moradpour ◽  
Hana Hamidi

Inbreeding is defined as the probability that two alleles at any locus are identical by descent and occur when related individuals are mated to each other. A total of 123427, 115810 and 88361 records of 412-d yields of milk, fat and protein of Iraqi Holstein cows were collected from 1995 to 2010 in 838 herds used to estimation the inbreeding depression and inbreeding trend. Pedigree records of Iraqi Holstein cow were used to assessment inbreeding coefficients and these coefficients ranged from 0 to 42%. Animal model was used to estimation inbreeding depression on traits. Fixed effects included in statistical model were herd – year, age at calving and inbreeding coefficient as continuous and discrete variable. When considering inbreeding as continuous variable in model, the inbreeding depression for 412-d yields of milk, fat and protein were -28.19, -0.98 and -0.88 kg per 1% increase in inbreeding in Iraqi Holsteins, respectively. In this group of animal that inbreeding coefficient was between 0 < F ≤ 5.34 inbreeding was not caused reduction in production traits. However, in group of animal that inbreeding coefficient was greater than 5.34, and inbreeding depression in production traits was observed. The result of this study confirms of inbreeding depression in Iraqi Holstein cows.


2015 ◽  
Author(s):  
Po-Ru Loh ◽  
Pier Francesco Palamara ◽  
Alkes L Price

Recent work has leveraged the extensive genotyping of the Icelandic population to perform long-range phasing (LRP), enabling accurate imputation and association analysis of rare variants in target samples typed on genotyping arrays. Here, we develop a fast and accurate LRP method, Eagle, that extends this paradigm to populations with much smaller proportions of genotyped samples by harnessing long (>4cM) identical-by-descent (IBD) tracts shared among distantly related individuals. We applied Eagle to N=150K samples (0.2% of the British population) from the UK Biobank, and we determined that it is 1-2 orders of magnitude faster than existing methods while achieving similar or better phasing accuracy (switch error rate ≈0.3%, corresponding to perfect phase in most 10Mb segments). We also observed that when used within an imputation pipeline, Eagle pre-phasing improved downstream imputation accuracy compared to pre-phasing in batches using existing methods (as necessary to achieve comparable computational cost).


2016 ◽  
Author(s):  
Vince Buffalo ◽  
Stephen M. Mount ◽  
Graham Coop

AbstractClose relatives can share large segments of their genome identical by descent (IBD) that can be identified in genome-wide polymorphism datasets. There are a range of methods to use these IBD segments to identify relatives and estimate their relationship. These methods have focused on sharing on the autosomes, as they provide a rich source of information about genealogical relationships. We can hope to learn additional information about recent ancestry through shared IBD segments on the X chromosome, but currently lack the theoretical framework to use this information fully. Here, we fill this gap by developing probability distributions for the number and length of X chromosome segments shared IBD between an individual and an ancestor k generations back, as well as between half-and full-cousin relationships. Due to the inheritance pattern of the X and the fact that X homologous recombination only occurs in females (outside of the pseudo-autosomal regions), the number of females along a genealogical lineage is a key quantity for understanding the number and length of the IBD segments shared amongst relatives. When inferring relationships among individuals, the number of female ancestors along a genealogical lineage will often be unknown. Therefore, our IBD segment length and number distributions marginalize over this unknown number of recombinational meioses through a distribution of recombinational meioses we derive. We show how our results can be used to estimate the number of female ancestors between two relatives, giving us more genealogical details than possible with autosomal data alone.


2000 ◽  
Vol 37 (03) ◽  
pp. 850-864 ◽  
Author(s):  
Sharon Browning

Two related individuals are identical by descent at a genetic locus if they share the same gene copy at that locus due to inheritance from a recent common ancestor. We consider idealized continuous identity by descent (IBD) data in which IBD status is known continuously along chromosomes. IBD data contains information about the relationship between the two individuals, and about the underlying crossover processes. We present a Monte Carlo method for calculating probabilities for IBD data. The method is not restricted to Haldane's Poisson process model of crossing-over but may be used with other models including the chi-square, Kosambi renewal and Sturt models. Results of a simulation study demonstrate that IBD data can be used to distinguish between alternative models for the crossover process.


2018 ◽  
Author(s):  
Monica D. Ramstetter ◽  
Sushila A. Shenoy ◽  
Thomas D. Dyer ◽  
Donna M. Lehman ◽  
Joanne E. Curran ◽  
...  

AbstractAs genetic datasets increase in size, the fraction of samples with one or more close relatives grows rapidly, resulting in sets of mutually related individuals. We present DRUID—Deep Relatedness Utilizing Identity by Descent—a method that works by inferring the identical by descent (IBD) sharing profile of an ungenotyped ancestor of a set of close relatives. Using this IBD profile, DRUID infers relatedness between unobserved ancestors and more distant relatives, thereby combining information from multiple samples to remove one or more generations between the deep relationships to be identified. DRUID constructs sets of close relatives by detecting full siblings and also uses a novel approach to identify the aunts/uncles of two or more siblings, recovering 92.2% of real aunts/uncles with zero false positives. In real and simulated data, DRUID correctly infers up to 10.5% more relatives than PADRE when using data from two sets of distantly related siblings, and 10.7–31.3% more relatives given two sets of siblings and their aunts/uncles. DRUID frequently infers relationships either correctly or within one degree of the truth, with PADRE classifying 43.3–58.3% of tenth degree relatives in this way compared to 79.6–96.7% using DRUID.


Author(s):  
Richard L. Leino ◽  
Jon G. Anderson ◽  
J. Howard McCormick

Groups of 12 fathead minnows were exposed for 129 days to Lake Superior water acidified (pH 5.0, 5.5, 6.0 or 6.5) with reagent grade H2SO4 by means of a multichannel toxicant system for flow-through bioassays. Untreated water (pH 7.5) had the following properties: hardness 45.3 ± 0.3 (95% confidence interval) mg/1 as CaCO3; alkalinity 42.6 ± 0.2 mg/1; Cl- 0.03 meq/1; Na+ 0.05 meq/1; K+ 0.01 meq/1; Ca2+ 0.68 meq/1; Mg2+ 0.26 meq/1; dissolved O2 5.8 ± 0.3 mg/1; free CO2 3.2 ± 0.4 mg/1; T= 24.3 ± 0.1°C. The 1st, 2nd and 3rd gills were subsequently processed for LM (methacrylate), TEM and SEM respectively.Three changes involving chloride cells were correlated with increasing acidity: 1) the appearance of apical pits (figs. 2,5 as compared to figs. 1, 3,4) in chloride cells (about 22% of the chloride cells had pits at pH 5.0); 2) increases in their numbers and 3) increases in the % of these cells in the epithelium of the secondary lamellae.


Sign in / Sign up

Export Citation Format

Share Document