scholarly journals Detection of antibiotic-resistant bacteria and their resistance genes from houseflies

2020 ◽  
Vol 13 (2) ◽  
pp. 266-274 ◽  
Author(s):  
Sharmin Akter ◽  
Abdullah Al Momen Sabuj ◽  
Zobayda Farzana Haque ◽  
Md. Tanvir Rahman ◽  
Md. Abdul Kafi ◽  
...  

Background and Aim: Houseflies (Musca domestica) are synanthropic insects which serve as biological or mechanical vectors for spreading multidrug-resistant bacteria responsible for many infectious diseases. This study aimed to detect antibiotic-resistant bacteria from houseflies, and to examine their resistance genes. Materials and Methods: A total of 140 houseflies were captured using sterile nylon net from seven places of Mymensingh city, Bangladesh. Immediately after collection, flies were transferred to a sterile zipper bag and brought to microbiology laboratory within 1 h. Three bacterial species were isolated from houseflies, based on cultural and molecular tests. After that, the isolates were subjected to antimicrobial susceptibility testing against commonly used antibiotics, by the disk diffusion method. Finally, the detection of antibiotic resistance genes tetA, tetB, mcr-3, mecA, and mecC was performed by a polymerase chain reaction. Results: The most common isolates were Staphylococcus aureus (78.6%), Salmonella spp., (66.4%), and Escherichia coli (51.4%). These species of bacteria were recovered from 78.3% of isolates from the Mymensingh Medical College Hospital areas. Most of the isolates of the three bacterial species were resistant to erythromycin, tetracycline, penicillin and amoxicillin and were sensitive to ciprofloxacin, ceftriaxone, chloramphenicol, gentamicin, and azithromycin. Five antibiotic resistance genes of three bacteria were detected: tetA, tetB, mcr-3, and mecA were found in 37%, 20%, 20%, and 14% isolates, respectively, and no isolates were positive for mecC gene. Conclusion: S. aureus, Salmonella spp., and E. coli with genetically-mediated multiple antibiotic resistance are carried in houseflies in the Mymensingh region. Flies may, therefore, represent an important means of transmission of these antibiotic-resistant bacteria, with consequent risks to human and animal health.

2021 ◽  
Vol 26 ◽  
Author(s):  
Maria Camila Zapata Zúñiga ◽  
Miguel Angel Parra-Pérez ◽  
Johan Alexander Álvarez-Berrio ◽  
Nidia Isabel Molina-Gómez

This study aimed to evaluate the efficiency of technologies for removing antibiotics, antibiotic-resistant bacteria and their antibiotic resistance genes, and the countries where they have been developed. For this purpose, was conducted a systematic review to identify the tertiary treatments to remove the above-mentioned pollutants. The ScienceDirect and Scopus databases were used as sources of information, taking into account only experimental research from 2006 to 2019 and technologies with removal rates higher than 70% to the information analyses. From the analysis of 9 technologies evaluated, in a set of 47 investigations, photo-Fenton, and electrochemical treatments were found to be the most efficient in the removal of antibiotics; gamma radiation and photocatalysis with TiO2 and UV revealed better results in the removal of resistant microbial agents and their resistance genes, with efficiencies of 99.9%. As one of the largest producers and consumers of antibiotics, China appears to be the country with the most scientific research on the area. The importance of innovation in wastewater treatment processes to achieve better results in the remotion of antibiotics, antibiotic-resistant bacteria, and their resistance genes is highlighted, given the effects on the aquatic ecosystems and public health.


2021 ◽  
Author(s):  
Bahare Moghimi ◽  
Maryam Ghobadi Dana ◽  
Reza Shapouri

Abstract Purpose: Given the increasing use of antibiotics on humans and livestock for treatment or as a growth stimulant, antibiotic resistance has become a general concern. The food chain and specially fermented foods could be a source of antibiotic-resistant bacteria and resistance genes. Lactic Acid Bacteria (LAB) and Lactobacilli are considered safe to use as starter culture or probiotic strains. Recently, however, antibiotic-resistant genes isolated from LABs showed the necessity of setting international regulations to reduce the risk of antibiotic resistance genes transmission via the food chain. The current study aimed to investigate the antibiotic resistance of Lactobacilli isolated from traditional yogurt samples from Zanjan province in Iran.Methods: Lactobacilli characterization and identification were carried out through biochemical and molecular methods. The disk diffusion method was applied to determine phenotype resistance using 13 antibiotic disks resistance genes presence were investigated in the isolates to determine transferability risk, respectively.Results: Based on biochemical and molecular methods, 24 isolates have been identified as Lactobacilli with multiple antibiotic-resistant phenotypes. Vancomycin resistance was a typical phenotype and genotype among isolates. On investigated Lactobacilli chromosome, Tetracycline resistance genes Chloramphenicol (cat), beta-lactam, aminoglycosides (aph (3’)-III), and aadA resistance genes have been detected. While the examined resistance genes have not been detected on the plasmids, they were all on the bacterial chromosome.Conclusion: The results showed that the investigated isolates did not carry the resistance genes on their plasmids. It, therefore, would be a good point since they probably do not transfer resistance genes to other bacteria, and they would be proper candidates to do more investigation for introducing new safe starter culture or probiotic strain to food industries.


Sign in / Sign up

Export Citation Format

Share Document