scholarly journals A Comparison of the Utilization of Carbon Nanopowder and Activated Carbon as Counter Electrode for Monolithic Dye-Sensitized Solar Cells (DSSC)

2018 ◽  
Vol 18 (1) ◽  
pp. 15
Author(s):  
Zaky Mubarak ◽  
Natalita Maulani Nursam ◽  
Shobih Shobih ◽  
Jojo Hidayat ◽  
Dahlang Tahir

Monolithic design is one of the most promising dye-sensitized solar cell (DSSC) architectures to develop, because it allows the elimination of one conductive substrate and offers the possibility for printing layer-by-layer of the materials that made up its structure. In this study, titanium dioxide-based monolithic type DSSCs were fabricated on a single fluorine-doped transparent oxide coated glass with TiO2 as photoanode and porous ZrO2 as spacer. The type of the carbon material used as the composite paste for the counter electrode was varied to see the effect on the solar cell efficiency. Four-point probes measurement revealed that the resistivity of the carbon layer synthesized using activated carbon exhibited slightly higher conductivity with a sheet resistance of 10.70 Ω/sq and 11.09 Ω/sq for activated carbon and carbon nanopowder, respectively. The efficiency of DSSC that uses activated carbon as counter electrode was higher (i.e. 0.221%) than the DSSC with carbon nanopowder (i.e. 0.005%). The better performance of DSSC with activated carbon as a counter electrode was due to its better conductivity and higher surface area compared to those of carbon nanopowder.

2019 ◽  
Vol 21 (14) ◽  
pp. 7534-7543 ◽  
Author(s):  
Lorenzo Veronese ◽  
Elsa Quartapelle Procopio ◽  
Thomas Moehl ◽  
Monica Panigati ◽  
Kazuteru Nonomura ◽  
...  

We report dinuclear hydrido-carbonyl rhenium complexes employed in DSSCs for the first time. An improved performance in solar cell efficiency was achieved by molecular design.


2017 ◽  
Vol 17 (2) ◽  
pp. 30 ◽  
Author(s):  
Natalita Maulani Nursam ◽  
Ade Istiqomah ◽  
Jojo Hidayat ◽  
Putri Nur Anggraini ◽  
Shobih

Dye-sensitized solar cells (DSSC) are widely developed due to their attractive appearance and simple fabrication processes. One of the challenges that arise in the DSSC fabrication involves high material cost associated with the cost of conductive substrate. DSSC with monolithic configuration was then developed on the basis of this motivation. In this contribution, titanium dioxide-based monolithic type DSSCs were fabricated on a single fluorine-doped transparent oxide coated glass using porous ZrO2 as spacer. Herein, the catalytic material for the counter-electrode was varied using carbon composite and platinum in order to analyze their effect on the solar cell efficiency. Four-point probe measurement revealed that the carbon composite exhibited slightly higher conductivity with a sheet resistance of 9.8 Ω/sq and 10.9 Ω/sq for carbon and platinum, respectively. Likewise, the photoconversion efficiency of the monolithic cells with carbon counter-electrode almost doubled the efficiency of the cells with platinum counter-electrode. Our results demonstrate that carbon could outperform the performance of platinum as catalytic material in monolithic DSSC.


Author(s):  
Marek Szindler ◽  
Magdalena M Szindler ◽  
Aleksandra Drygała ◽  
Krzysztof Lukaszkowicz ◽  
Paulina Kaim ◽  
...  

One of the important research directions in the field of photovoltaics is integration with construction. The integration of solar cell systems with a building can reduce installation costs and help optimize the used space. One of the interesting types of cells is dye-sensitized solar cells. In addition to their interesting properties, they also have aesthetic value. In the classic arrangement, they are constructed using glass with a transparent conductive layer (TCL). This article describes replacing a classic glass counter electrode with an electrode based on a ceramic tile and nickel foil. This solution makes it possible to expand their construction applications. The advantage of this solution is full integration with construction while simultaneously generating electricity. A dye-sensitized solar cell was built layer-by-layer on ceramic tile and nickel foil. An atomization method was used to deposit fluorine-doped tin oxide, and then a screen printing method was used to deposit a platinum layer. The electrical parameters of the manufactured DSSCs with and without a counter electrode tile were characterized by measuring their current-voltage characteristics under standard AM 1.5 radiation. A dye-sensitized solar cell integrated with ceramic tiles and nickel foil was produced and displayed an efficiency of over 4%.


2016 ◽  
Vol 4 (2) ◽  
pp. 384-394 ◽  
Author(s):  
Yi-Feng Lin ◽  
Chun-Ting Li ◽  
Kuo-Chuan Ho

The hierarchical PEDOT-MeOH tube-coral array counter electrode (CE) gave a good cell efficiency of 9.13% to its dye-sensitized solar cell, suggesting its potential to replace the traditional expensive Pt CE.


Heliyon ◽  
2018 ◽  
Vol 4 (12) ◽  
pp. e01078 ◽  
Author(s):  
Temitope Abodunrin ◽  
Adenike Boyo ◽  
Mojisola Usikalu ◽  
Moses Emetere ◽  
Oluseyi Ajayi ◽  
...  

2021 ◽  
Author(s):  
Indriana Kartini ◽  
Adhi Dwi Hatmanto

This article will discuss natural dyes’ role, from colouring the cotton fabrics with some functionality to harvesting sunlight in the dye-sensitized solar cells. Natural dye colourants are identical to the low light- and wash-fastness. Therefore, an approach to improving the colourant’s physical properties is necessary. Colouring steps employing silica nanosol and chitosan will be presented. The first part will be these multifunctional natural dye coatings on cotton fabrics. Then, functionality such as hydrophobic surfaces natural dyed cotton fabrics will be discussed. Natural dyes are also potential for electronic application, such as solar cells. So, the second part will present natural dyes as the photosensitizers for solar cells. The dyes are adsorbed on a semiconductor oxide surface, such as TiO2 as the photoanode. Electrochemical study to explore natural dyes’ potential as sensitizer will be discussed, for example, natural dyes for Batik. Ideas in improving solar cell efficiency will be discussed by altering the photoanode’s morphology. The ideas to couple the natural dyes with an organic–inorganic hybrid of perovskite and carbon dots are then envisaged.


2021 ◽  
Vol 1016 ◽  
pp. 863-868
Author(s):  
Tika Erna Putri ◽  
Yuan Hao ◽  
Fadzai Lesley Chawarambwa ◽  
Hyunwoong Seo ◽  
Min Kyu Son ◽  
...  

The losses of solar cells are consisted of electrical losses and optical losses. Optical losses chiefly reduce the short-circuit current. Here we apply bifacial cell approach to increase light absorption and the short-circuit current of dye sensitized solar cells (DSSCs). We have employed activated carbon (AC) as a very low cost counter electrode, an alternative to Pt counter electrode. Addition of dimethyl sulfoxide (DMSO) and titanium carbonitride (TiCN) to AC increase the efficiency of bifacial DSSC at a mirror angle of from 5.10% to and , respectively. These results indicate that AC has the potential to replace Pt as a very low cost counter electrode of bifacial DSSCs. The bifacial DSSC system using double plane mirrors improve PCE to for Pt counter electrode at a mirror angle of , and for AC counter electrode at a mirror angle of , respectively.


Sign in / Sign up

Export Citation Format

Share Document