scholarly journals Structural, Magnetic, and X-Band Microwave Absorbing Properties of Ni-Ferrites Prepared Using Oxidized Mill Scales

2021 ◽  
Vol 21 (1) ◽  
pp. 27
Author(s):  
Ardita Septiani ◽  
Novrita Idayanti ◽  
Tony Kristiantoro ◽  
Dedi Mada ◽  
Nadya Larasati Kartika ◽  
...  

This study aims to evaluate the structural, magnetic, and microwave absorbing properties at the X-band region of oxidized mill scales as by-product derived from a steel making process by means of a facile solid-state reaction. The oxidized mill scales were heated at 600 °C for 4 h followed by mixing with NiO. A calcination process took place at 900 °C and sintering process were conducted at 1260 °C with a milling process conducted in between the heating process. X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS) were employed to evaluate the structural properties of the Ni-ferrites samples. Remacomp measurement were conducted to evaluate the magnetic properties and vector network analyzer (VNA) to measure its microwave properties. A single phase of NiFe2O4 was confirmed by XRD data. The site occupancies derived from the Rietveld refinement shows that the Ni:Fe:O ratio deviates from the 1:2:4 ratio as that suggests vacancies formed in the Ni2+ and Fe3+ that lowers the unit cell density to 5.08 g/cm3 that further confirmed by EDS measurement. The coercivity of 11 kOe is also higher than the bulk NiFe2O4¬ prepared by the chemical grade raw materials. The reflection data of the microwave properties at X-band of 8-12 GHz do not shows significant absorptions. This study suggests that the selected preparation method yields a single phase, however with the significant crystallographic defects and has less ‘soft’ magnetic properties compared to NiFe2O4 prepared using chemical grade by previous study.

2016 ◽  
Vol 47 (5) ◽  
pp. 674-685 ◽  
Author(s):  
Maedeh Simayee ◽  
Majid Montazer

In the present work, polyester fabric with protective and magnetic properties is introduced using mixture of micro magnetic carbonyl iron powder and nano carbon black through pad-dry-cure method and sputter coating with aluminium (Al). This leads to X-band microwave absorbing properties as the great demand for protective garment. The morphology, static magnetic and X-band microwave absorbing properties of the treated fabrics were characterized by field emission scanning electron microscopy, vibrating sample magnetometer and vector network analyzer in the range of 8.2–12.4 GHz. Normal-angle X-ray diffraction was used to study the crystalline structure of treated PET fabric. Compared with the blank polyethylene terephthalate fabric without Al sputter coating, the presence of nano carbon black and carbonyl iron powder on the polyethylene terephthalate fabric sputter coated with aluminum exhibited higher microwave absorbing properties particularly in the primary range of 8.2–12.4 GHz. The results in the whole frequency range investigated were remarkable; however, the reflection loss was found to be lower than −5.9 dB in the entire frequency. The maximum reflection loss value was reached to −7.7 dB at the frequency of 8.2 GHz. Overall, the co-application of nano carbon black and carbonyl iron powders on the polyethylene terephthalate fabric opens up a new coating method for X-band microwave absorbing properties.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3259
Author(s):  
Ka Gao ◽  
Junliang Zhao ◽  
Zhongyi Bai ◽  
Wenzheng Song ◽  
Rui Zhang

In this paper, the flower-like FeCo/ZnO composites were successfully firstly prepared by a two-step method, and their microstructures and microwave absorbing properties were characterized. The results show that with an increase of temperature, the content of ZnO loaded on a FeCo/ZnO composite surface was increased. The optimal reflection loss (RL) value can be reached around −53.81 dB at 9.8 GHz, which is obviously superior to results of previous studies and reports, and its effective bandwidth (RL < −10 dB) is 3.8 GHz in the frequency range of 8.7–11.8 GHz with a matching thickness of 1.9 mm. We considered that a large number of lamellar and rod-like ZnO loaded on nano-FeCo single-phase solid solution by two-step method can significantly improve the electromagnetic wave absorption properties.


2020 ◽  
Vol 2 (12) ◽  
Author(s):  
Monika Rani ◽  
Kamaljit Singh Bhatia ◽  
Harjitpal Singh ◽  
Harsimrat Kaur ◽  
Nancy Gupta

2011 ◽  
Vol 109 (7) ◽  
pp. 07B527 ◽  
Author(s):  
Ruey-Bin Yang ◽  
Wen-Fan Liang ◽  
Wei-Syuan Lin ◽  
Hong-Ming Lin ◽  
Chien-Yie Tsay ◽  
...  

2012 ◽  
Vol 129 (3) ◽  
pp. 1068-1073 ◽  
Author(s):  
Zhibin Huang ◽  
Wenbo Kang ◽  
Xiufeng Tang ◽  
Yuchang Qing ◽  
Fa Luo

2015 ◽  
Vol 157 ◽  
pp. 124-129 ◽  
Author(s):  
Silvia E. Jacobo ◽  
Paula G. Bercoff ◽  
Carlos A. Herme ◽  
Leandro A. Vives

2011 ◽  
Vol 110-116 ◽  
pp. 1736-1740 ◽  
Author(s):  
Ju Hua Luo

Sr-ferrite powders were preparated by mechanochemical treatments using SrCO3 and Fe2O3 as raw materials. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM) were employed to evaluated the morphologies, structures and magnetic properties of samples. The results indicated that the starting mixture became amorphous stage after ball-milled for 30h, and single phase SrFe12O19 could be obtained after annealed at 900°C for 2h. And the saturation magnetization was 58.2Am2/kg, and coercivity was 281.2 kA/m at room temperature. In comparison with the traditional firing method , the mechanochemical method benefited achieving the higher coercivity, which indicated that the samples had a better magnetic properties.


Sign in / Sign up

Export Citation Format

Share Document