scholarly journals Thermal Stability and Drug-Excipient Compatibility Studies of Peppermint and Caraway Oils for Formulation of Chewable Tablets

2013 ◽  
Vol 25 (11) ◽  
pp. 5930-5934
Author(s):  
Nikhil K. Sachan ◽  
Seema Pushkar ◽  
Anupam K. Sachan ◽  
S.K. Ghosh
Author(s):  
PRADIP KUMAR CHAUDHARY ◽  
ABDUL RAHEEM T. ◽  
MANJUNATH U MACHALE ◽  
VASIA ◽  
SHAIK SADIK

Objective: The aim of the present study was to prepare and optimize levamisole chewable tablets by using various super disintegrants, namely; sodium starch glycolate, DRC Indion 204, and DRC Indion 234. Methods: Drug excipient compatibility study was carried out by FTIR spectroscopy to verify the compatibility of levamisole with the excipients. Nine batches of levamisole chewable tablets were prepared according to 32 factorial designs using a direct compression method by optimizing the super disintegrant concentration. The powder blend was exposed to pre-compression studies of the powder blend followed by post-compression studies of the formulated tablets. Results: FTIR study revealed that the excipients used in the formulations were compatible with the drug. The pre-compression and post-compression parameters were found within the IP limits. Form the dissolution studies, it was evident that the formulation prepared with DRC Indion 234 (50 mg) showed maximum percentage drug release in 45 min (97.13%) hence it is considered as optimized formulation. When compared to all other formulation, the batches with DRC Indion 234 (F7-F9) showed a better release of the drug (90 % drug release within 45 min). Conclusion: Nine batches of levamisole chewable tablets were successfully formulated by optimizing the concentration of super disintegrants such as sodium starch glycolate, DRC Indion 204, and DRC Indion 234. It was concluded from the dissolution studies that the DRC Indion 234 is the best super disintegrant irrespective of their concentration for the formulation of levamisole chewable tablets when compared to sodium starch Glycolate and DRC Indion 204.


2014 ◽  
Vol 120 (1) ◽  
pp. 771-781 ◽  
Author(s):  
Lilian Klein Teleginski ◽  
Aline Biggi Maciel ◽  
Cassiana Mendes ◽  
Marcos Antônio Segatto Silva ◽  
Larissa Sakis Bernardi ◽  
...  

Author(s):  
Srikumar Billa ◽  
Saibabu Ch ◽  
Malyadri T

In the present research work, Febuxostat Immediate Release Tablet was prepared by direct compression method using varying concentrations of Lycoat, Crospovidone& Croscarmellose sodium as disintegrants. The formulations prepared were evaluated for precompression& post-compression parameters. From the drug excipient compatibility studies, we observe that there are no interactions between the pure drug (Febuxostat) and optimized formulation (Febuxostat+ excipients) which indicates there are no physical changes. Post compression parameters were found to be within the limits. Among the formulation prepared the tablet containing 12mg of CCS shows 98.13% of the drug release within 45 min & follows first-order kinetics.


2011 ◽  
Vol 106 (3) ◽  
pp. 819-824 ◽  
Author(s):  
Flávia Pires Maximiano ◽  
Kátia Monteiro Novack ◽  
Maria Terezinha Bahia ◽  
Lívia Lira de Sá-Barreto ◽  
Marcílio Sérgio Soares da Cunha-Filho

Author(s):  
Afroz Patan

Objective: A simple, accurate, precise, and reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated for gabapentin (GBP) and its related substances in the capsule dosage form and excipient compatibility studies. Methods: The review of literature indicates that various methods have been reported for the estimation of GBP. When some excipients were used for GBP, it produced degradation product called lactam due to the presence of more water content. Hence, a novel RP-HPLC method has been developed for studying excipient compatibility and related substances of GBP in capsule dosage form using excipients such as lactose anhydrous and dried maize starch which is having less water activity. Waters Alliance e2695 separation module with ultraviolet/photodiode array (UV/PDA) detector with Inertsil C8 (250 mm×4.6 mm); 5 μm with an injection volume of 50 μl is injected and eluted with the (gradient program) mobile Phase A buffer: acetonitrile (940:60) and mobile phase B buffer: acetonitrile (700:300) pH 6.9 with 5 N potassium hydroxide which is pumped at a speed of 1.5 ml/min and detected by UV/PDA detector at 210 nm. The peaks of GBP and GBP-related compound A are well separated at 6.7 min and 34.5 min, respectively. Results: The method developed was approved for various parameters such as accuracy, specificity, precision, intermediate precision, range, linearity, robustness, limit of detection, limit of quantification, steadiness, and system suitability according to the International Conference on Harmonization guidelines. The results got were according to the acceptance criteria. Conclusion: The technique proposed was assured for detection of related substances in the marketed formulation and could be used for the routine analysis of GBP and GBP-related compound A in the capsule dosage form.


Author(s):  
SANTOSH KUMAR R ◽  
SAHITHI MUDILI

Objective: The main aim of the present work is to enhance the solubility and bioavailability of the ibuprofen by formulating it into fast-dissolving tablets employing starch glutamate as a novel superdisintegrant. Materials and Methods: Starch glutamate was prepared from native potato starch and glutamic acid by the esterification process. Drug-excipient compatibility studies were performed between the starch glutamate and ibuprofen with the help of Fourier transform infrared spectroscopy, and differential scanning calorimetry techniques. Ibuprofen fast dissolving tablets were formulated employing different superdisintegrants along with the starch glutamate (a novel superdisintegrant) by the direct compression method. The prepared ibuprofen fast-dissolving tablets were evaluated for various pre- and post-compression parameters along with the in vitro and in vivo release characteristics. Optimized formulation stability studies were performed at accelerated conditions for 6 months as per the International Conference on Harmonization (ICH) and WHO guidelines. Results: Drug-excipient compatibility studies indicated that prepared starch glutamate was compatible with ibuprofen drug, and it can be used as a superdisintegrant in the formulation of fast-dissolving tablets. Fast-dissolving tablets of ibuprofen were formulated by employing starch glutamate as a superdisintegrant showed good tablet properties and showed an increased dissolution efficiency of the drug. Among all the formulations (F1–F8), the formulation F4 which contains 5% starch glutamate and 5% croscarmellose sodium as superdisintegrants showed 99.7±0.34% drug dissolution within 5 min. Peak plasma concentration of optimized formulation F2 was achieved in a short period of time and increased relative bioavailability and F2 was found to be stable during accelerated stability testing as per the ICH stability guidelines. Conclusion: From drug-excipient compatibility studies, disintegration time, in vitro dissolution studies, and pharmacokinetic studies, it was concluded that starch glutamate can be used as a superdisintegrant in the formulation of fast-dissolving tablets to increase the solubility as well as bioavailability of the poorly soluble drugs.


2009 ◽  
Vol 102 (1) ◽  
pp. 193-201 ◽  
Author(s):  
Giovanna Bruni ◽  
Vittorio Berbenni ◽  
Chiara Milanese ◽  
Alessandro Girella ◽  
Amedeo Marini

Sign in / Sign up

Export Citation Format

Share Document