scholarly journals Physicochemical Properties and Excipient Compatibility Studies of Probiotic Bacillus coagulans Spores

2009 ◽  
Vol 77 (3) ◽  
pp. 625-637 ◽  
Author(s):  
Pushpak S. Bora
2014 ◽  
Vol 120 (1) ◽  
pp. 771-781 ◽  
Author(s):  
Lilian Klein Teleginski ◽  
Aline Biggi Maciel ◽  
Cassiana Mendes ◽  
Marcos Antônio Segatto Silva ◽  
Larissa Sakis Bernardi ◽  
...  

Author(s):  
Srikumar Billa ◽  
Saibabu Ch ◽  
Malyadri T

In the present research work, Febuxostat Immediate Release Tablet was prepared by direct compression method using varying concentrations of Lycoat, Crospovidone& Croscarmellose sodium as disintegrants. The formulations prepared were evaluated for precompression& post-compression parameters. From the drug excipient compatibility studies, we observe that there are no interactions between the pure drug (Febuxostat) and optimized formulation (Febuxostat+ excipients) which indicates there are no physical changes. Post compression parameters were found to be within the limits. Among the formulation prepared the tablet containing 12mg of CCS shows 98.13% of the drug release within 45 min & follows first-order kinetics.


2019 ◽  
Vol 9 (4-s) ◽  
pp. 338-342
Author(s):  
Shyam Bihari Sharma ◽  
Suman Jain ◽  
K. Ganesan

Microspheres are one of the novel drug delivery system which possess several applications and are made up of assorted polymers. Microspheres can be defined as solid, approximately spherical particles ranging in size from 1 to 1000 μm range in diameter having a core of drug and entirely outer layers of polymers as coating material. They are made up of polymeric, waxy or other protective materials i.e. biodegradable synthetic polymer and modified natural products such as starches, gums, proteins, fats and waxes. Preformulation is a group of studies that focus on the physicochemical properties of a new drug candidate that could affect the drug performance and the development of a dosage form. This couldprovide important information for formulation design or support the need for molecular modification. Every drug has intrinsic chemical and physical properties which has been consider before development of pharmaceutical formulation. This property provides the framework for drugs combination with pharmaceutical ingredients in the fabrication of dosage form. Objective of preformulation study is to develop the elegant, stable, effective and safe dosage form by establishing kinetic rate profile, compatibility with the other ingredients and establish Physico-chemical parameter of new drug substances. The purpose of the present study was to systematically investigate some of the important physicochemical properties of pralidoxime chloride for preparation of microspheres. The physicochemical properties such as solubility, pKa, dissolution, melting point, assay development, excipient compatibility etc. of pralidoxime chloride was carried out. Before selection of excipients, the Preformulation study of drug pralidoxime is completed for successful formulation of microspheres. The result of Preformulation studies shows good flow properties, excipient compatibility, solubility efficiency and melting point. From this study we concluded that pralidoximewith HPMC and EC can be used to formulate pralidoxime microspheres for modified release. Keywords: Microspheres, Preformulation, Pralidoxime chloride, Physico-chemical parameter.


2011 ◽  
Vol 106 (3) ◽  
pp. 819-824 ◽  
Author(s):  
Flávia Pires Maximiano ◽  
Kátia Monteiro Novack ◽  
Maria Terezinha Bahia ◽  
Lívia Lira de Sá-Barreto ◽  
Marcílio Sérgio Soares da Cunha-Filho

Author(s):  
Afroz Patan

Objective: A simple, accurate, precise, and reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated for gabapentin (GBP) and its related substances in the capsule dosage form and excipient compatibility studies. Methods: The review of literature indicates that various methods have been reported for the estimation of GBP. When some excipients were used for GBP, it produced degradation product called lactam due to the presence of more water content. Hence, a novel RP-HPLC method has been developed for studying excipient compatibility and related substances of GBP in capsule dosage form using excipients such as lactose anhydrous and dried maize starch which is having less water activity. Waters Alliance e2695 separation module with ultraviolet/photodiode array (UV/PDA) detector with Inertsil C8 (250 mm×4.6 mm); 5 μm with an injection volume of 50 μl is injected and eluted with the (gradient program) mobile Phase A buffer: acetonitrile (940:60) and mobile phase B buffer: acetonitrile (700:300) pH 6.9 with 5 N potassium hydroxide which is pumped at a speed of 1.5 ml/min and detected by UV/PDA detector at 210 nm. The peaks of GBP and GBP-related compound A are well separated at 6.7 min and 34.5 min, respectively. Results: The method developed was approved for various parameters such as accuracy, specificity, precision, intermediate precision, range, linearity, robustness, limit of detection, limit of quantification, steadiness, and system suitability according to the International Conference on Harmonization guidelines. The results got were according to the acceptance criteria. Conclusion: The technique proposed was assured for detection of related substances in the marketed formulation and could be used for the routine analysis of GBP and GBP-related compound A in the capsule dosage form.


Author(s):  
SANTOSH KUMAR R ◽  
SAHITHI MUDILI

Objective: The main aim of the present work is to enhance the solubility and bioavailability of the ibuprofen by formulating it into fast-dissolving tablets employing starch glutamate as a novel superdisintegrant. Materials and Methods: Starch glutamate was prepared from native potato starch and glutamic acid by the esterification process. Drug-excipient compatibility studies were performed between the starch glutamate and ibuprofen with the help of Fourier transform infrared spectroscopy, and differential scanning calorimetry techniques. Ibuprofen fast dissolving tablets were formulated employing different superdisintegrants along with the starch glutamate (a novel superdisintegrant) by the direct compression method. The prepared ibuprofen fast-dissolving tablets were evaluated for various pre- and post-compression parameters along with the in vitro and in vivo release characteristics. Optimized formulation stability studies were performed at accelerated conditions for 6 months as per the International Conference on Harmonization (ICH) and WHO guidelines. Results: Drug-excipient compatibility studies indicated that prepared starch glutamate was compatible with ibuprofen drug, and it can be used as a superdisintegrant in the formulation of fast-dissolving tablets. Fast-dissolving tablets of ibuprofen were formulated by employing starch glutamate as a superdisintegrant showed good tablet properties and showed an increased dissolution efficiency of the drug. Among all the formulations (F1–F8), the formulation F4 which contains 5% starch glutamate and 5% croscarmellose sodium as superdisintegrants showed 99.7±0.34% drug dissolution within 5 min. Peak plasma concentration of optimized formulation F2 was achieved in a short period of time and increased relative bioavailability and F2 was found to be stable during accelerated stability testing as per the ICH stability guidelines. Conclusion: From drug-excipient compatibility studies, disintegration time, in vitro dissolution studies, and pharmacokinetic studies, it was concluded that starch glutamate can be used as a superdisintegrant in the formulation of fast-dissolving tablets to increase the solubility as well as bioavailability of the poorly soluble drugs.


2009 ◽  
Vol 102 (1) ◽  
pp. 193-201 ◽  
Author(s):  
Giovanna Bruni ◽  
Vittorio Berbenni ◽  
Chiara Milanese ◽  
Alessandro Girella ◽  
Amedeo Marini

Sign in / Sign up

Export Citation Format

Share Document