scholarly journals Syntheses, Characterization and Biological Activity of Coordination Compounds of Propanedioic Acid and its Mixed Ligand Complexes with N,N'-Dihydroxy-2,3-butanediimine

2021 ◽  
Vol 33 (8) ◽  
pp. 1911-1918
Author(s):  
T.O. Aiyelabola ◽  
E.O. Akinkunmi ◽  
O Osungunna

The coordination compounds of propanedioic acid with cobalt(II), nickel(II) and copper(II) ions were synthesized using metal:ligand 1:2. In addition to this, mixed ligand complexes using the same metal ions with propanedioic acid as the primary ligand and N,N'-dihydroxy-2,3-butanediimine as the secondary ligand were also synthesized using M:L1:L2 (1:1:1) where L1 = propanedioic acid, L2 = N,N'-dihydroxy-2,3-butanediimine and M = Cu(II), Ni(II) and Cu(II). The synthesized compounds were characterized using FTIR, UV-vis, magnetic susceptibility measurement and percentage metal composition. The ligand and its metal complexes were tested for their cytotoxic and antibacterial activities. Results indicated that a dimeric square planar geometry was assumed by the cobalt(II) and nickel(II) propanedioic acid complexes. Octahedral geometry was proposed for both cobalt(II) and copper(II) mixed ligand complexes. A dinuclear square pyramidal geometry was suggested for the copper(II) propanedioic acid complex and square planar/octahedral geometry for the nickel(II) mixed ligand complex. The copper(II) propanedioic acid complex elicited the best cytotoxic activity. On the other hand, the nickel(II) propanedioic acid complex showed the remarkable antimicrobial activity. The compounds exhibited good antimicrobial activity in most of the cases with the exception of the cobalt(II) propanedioic acid complex. It was concluded that coordination of the ligands to the metal ions lowered the toxicity of the ligands. It was further concluded that the antimicrobial activity of the compounds was partly dependent on the synergism/additive effect of the intrinsic therapeutic properties of the metal ion and the ligands within the coordination sphere of the complexes synthesized. And this is also in part a function of the geometry assumed by the complexes.

2018 ◽  
Vol 11 (1) ◽  
pp. 32-36
Author(s):  
I.T. Siraj ◽  
M Sule

Complexes of Mn(II), Fe(II) and Co(II) containing N, N’-bis[o-anisaldehyde]p-phenylenediamine tetradentate Schiff base as primary ligand and glycine as secondary bidentate ligand have been synthesized by reflux in 1:1:1 mole ratio and characterized both analytically and spectroscopically. Molar conductance measurement (69.02 to 86.30Ω–1 cm2 mol–1) of the complexes indicated they are weak electrolyte and magnetic susceptibility measurement shows values in range of 4.53 to 5.59BM indicating their paramagnetism. The infrared data suggested that the Schiff base coordinated via the two nitrogen atoms of the azomethine groups (1628 to 1680 cm-1) and the oxygen atoms of the adjacent methoxy groups (1341 to 1389 cm-1), while glycine coordinated via the nitrogen atom of the amino group (3060-3324 cm-1) and the oxygen atom of the carboxylate anion. Based on the analytical and spectroscopic data the complexes may be assigned an octahedral geometries and molecular formulae of the form [M(L)Gly], where M = Mn, Fe and Co, L=Schiff base and Gly = glycine. The Schiff base and its mixed ligand complexes were screened for antimicrobial activity against Staphylococcus aureus, Escherichia coli, Salmonella typhi, Mucor inducus and Aspergillus fumigatus. The complexes exhibited enhanced antimicrobial activity (10mm to 18mm) at 60 µg/disc as compared to 10mm activity of the uncoordinated Schiff base at the same concentration.Keywords: Mixed ligand complex; Schiff base, Glycine, p-phenylenediamine, o-anisaldehyde


2019 ◽  
Vol 70 (1) ◽  
pp. 36-40
Author(s):  
Rana Abdulilah Abbas ◽  
Amer J.jarad ◽  
Ion Marius Nafliu ◽  
Aurelia Cristina Nechifor

Co+2, Ni+2, Cu+2 as well Zn+2 compounds mixed ligand from 8-hydroxyquinoline(8-HQ) also tributylphosphine (PBu3) have been attended at aquatic ethyl alcohol for (1:2:2) (M:8-HQ:PBu3). Produced complexes have been identified by utilizing atomic absorption flame, FT-IR as well UV-Vis spectrum manners also magnetic susceptibility as well as conductivity methods. At addendum antibacterial efficiency from the ligands as well complexes oboist three species about bacteria have been as well examined. Ligands and their complexes show good bacterial efficiencies. Of the gained datum the octahedral geometry was proposed into whole prepared complexes.


2021 ◽  
Vol 12 (2) ◽  
pp. 96-103
Author(s):  
E.T. Omotade ◽  
A.P. Oviawe

The mixed ligand complexes involving Fe(II), Co(II) and Ni(II) ions, Schiff base 4 phenylpyrazal-5-one (L1) and L-lysine (Lys) were synthesized. The complexes were characterized on the basis of their elemental analysis, conductivity measurements, FT-IR, MS,1H-NMR and 13C-NMR spectral studies. All the synthesized complexes were subjected to simultaneous thermogravimetric analysis to study their decomposition mechanism and thermal stability. The mixed ligand complexes were screened against some strains of bacteria and fungi to study their antimicrobial activity. The complexes were found to be non-electrolytes and possessed octahedral geometry. The results showed that the metal complexes possessed better antimicrobial activity than the free ligands.


Author(s):  
Mohammed Al-Amery1 ◽  
Ashraf Saad Rasheed ◽  
Dina A. Najeeb

Five new mixed ligand metal complexes have been synthesized by the reaction of divalent transition metal ions (Hg, Ni, Zn, Cu and Cd) with 2-(naphthalen-l-ylamino)-2-phenylacetonitrile (L1 ) and 1,10-phenanthroline (L2). The coordination likelihood of the two ligands toward metal ions has been suggested in the light of elemental analysis, UV-Vis spectra, FTIR, 1H-NMR, flam atomic absorption, molar conductance and magnetic studies. Results data suggest that the octahedral geometry for all the prepared complexes. Antibacterial examination of synthesized complexes in vitro was performed against four bacterias. Firstly, Gram-negative bacteria namely, Pseudomonas aerugin and Escherichia. Secondly, Gram-positive bacteria namely, Bacillus subtilis, Staphylococcuaurouss. Results data exhibit that the synthesized complexes exhibited more biological activity than tetracycline pharmaceutical.


1985 ◽  
Vol 50 (6) ◽  
pp. 1383-1390
Author(s):  
Aref A. M. Aly ◽  
Ahmed A. Mohamed ◽  
Mahmoud A. Mousa ◽  
Mohamed El-Shabasy

The synthesis of the following mixed ligand complexes is reported: [Ni(phdtc)2(dpm)2], [Ni(phdtc)2(dpe)2], [Ni(phdtc)2(dpp)3], [Ni(1-naphdtc)2(dpm)2], [Ni(1-naphdtc)2], and [Ni(1-naphdtc)2(dpp)2], where phdtc = PhNHCSS-, 1-naphdtc = 1-NaPhNHCSS-, dpm = Ph2PCH2PPh2, dpe = Ph2P(CH2)2PPh2, and dpp = Ph2P(CH2)3PPh2. The complexes are characterised by microanalysis, IR and UV-Vis spectra, magnetic measurements, conductivity, X-ray powder diffraction, and thermal analysis. All the mixed ligand complexes are diamagnetic, and thus a square-planar or square-pyramidal (low-spin) structure was proposed for the present complexes.


2010 ◽  
Vol 7 (1) ◽  
pp. 585-592
Author(s):  
Baghdad Science Journal

A new series of Fe (III) , Co (II) , Ni (II) and Cu (II) complexes of the Schiff base, 5 (2-hydroxy benzylidine) -2-thio ether -1, 3, 4-thiadiazole were prepared and characterized .The imine behaves as a bidentate. The nature of bonding and the stereochemistry of the complexes were deduced from metal analyses, infrared, electronic spectra,magnetic susceptibility and conductivity measurements, an octahedral geometry was suggested for all complexes except the copper complex has a square planar geometry .preliminary in vitro tests for antimicrobial activity show that all the prepared compounds except iron complex display good activity to gram positive Staphelococcus aures and gram negative Escherchia coli.


Sign in / Sign up

Export Citation Format

Share Document