Synthesis, Characterization, Crystal and Molecular Structure Analysis of 1-(2-Chlorophenyl)-3-methyl-4-(p-tolylthio)-1H-pyrazol-5-ol

2019 ◽  
Vol 4 (4) ◽  
pp. 267-272
Author(s):  
Ronak D. Kamani ◽  
Rahul P. Thummar ◽  
Nirav H. Sapariya ◽  
Beena K. Vaghasiya ◽  
Jemin R. Avalani ◽  
...  

The synthesis of a novel tolylthiopyrazol bearing methyl group has been achieved by transition metal free N-chlorosuccinimide mediated direct sulfenylation of 1-aryl pyrazolones at room temperature. The product obtained was characterized by spectroscopic techniques and finally confirmed by X-ray diffraction studies. The compound 1-(2-chlorophenyl)-3-methyl-4-(p-tolylthio)-1H-pyrazol-5-ol (m.f. C17H15N2OSCl) crystallizes in monoclinic crystal class in space group P21/c with cell parameters a = 9.6479(5) Å, b = 15.1233(8) Å, c = 11.4852(6) Å, β = 108.374(2)°, V=1590.4(2) Å3 and Z = 4. The final residual factor R1 = 0.0499.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Suresh Sharma ◽  
B. D. Gupta ◽  
Rajni Kant ◽  
Vivek K. Gupta

The structure of title compound Negundoside (2′-p-hydroxybenzoyl mussaenosidic acid) was established by spectral and X-ray diffraction studies. The compound crystallizes in the monoclinic crystal system with space group P21 having unit cell parameters: a=11.6201 (5) Å, b=9.2500 (4) Å, c=12.2516 (5) Å, β=97.793 (4)°, and Z=2. The crystal structure was solved by direct method using single crystal X-ray diffraction data collected at room temperature and refined by full-matrix least-squares procedures to a final R value of 0.0520 for 3389 observed reflections.


2012 ◽  
Vol 730-732 ◽  
pp. 100-104
Author(s):  
Agata Lisińska-Czekaj

In the present study Bi6Fe2Ti3O18 (BFTO) ceramics has been fabricated by solid state reaction from the mixture of simple oxides viz. Bi2O3, TiO2 and Fe2O3. Stoichiometric mixture of the powders was thermally analyzed so parameters of the thermal treatment were determined. The EDS measurements have shown conservation of the chemical composition of the ceramic powder after calcination. Hot-pressing method was used for final densification of ceramic samples. The crystalline structure of the sintered samples was examined by X-ray diffraction method at room temperature. It was found that BFTO ceramics sintered at T=980 °C adopted the orthorhombic structure of Aba2 (41) space group with the following elementary cell parameters: a=5.4567(2)Å, b=49.418(2) and c=5.4826(2). Details concerning the atom’s positions are presented.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 910
Author(s):  
Daniel Diaz-Anichtchenko ◽  
Robin Turnbull ◽  
Enrico Bandiello ◽  
Simone Anzellini ◽  
Daniel Errandonea

We report on high-pressure synchrotron X-ray diffraction measurements on Ni3V2O8 at room-temperature up to 23 GPa. According to this study, the ambient-pressure orthorhombic structure remains stable up to the highest pressure reached in the experiments. We have also obtained the pressure dependence of the unit-cell parameters, which reveals an anisotropic compression behavior. In addition, a room-temperature pressure–volume third-order Birch–Murnaghan equation of state has been obtained with parameters: V0 = 555.7(2) Å3, K0 = 139(3) GPa, and K0′ = 4.4(3). According to this result, Ni3V2O8 is the least compressible kagome-type vanadate. The changes of the crystal structure under compression have been related to the presence of a chain of edge-sharing NiO6 octahedral units forming kagome staircases interconnected by VO4 rigid tetrahedral units. The reported results are discussed in comparison with high-pressure X-ray diffraction results from isostructural Zn3V2O8 and density-functional theory calculations on several isostructural vanadates.


1984 ◽  
Vol 39 (2) ◽  
pp. 145-148 ◽  
Author(s):  
Ulf Thewalt ◽  
Konrad Holl

The compound S2N2 • 2AlBr3 has been prepared by reaction of S4N4 with AlBr3 in 1,2-dibromoethane at room temperature. Its crystal and molecular structure have been determined by X-ray diffraction; R = 0.068. Crystal data: monoclinic, P 21/n, a = 9.594(5), b = 9.975(4), c = 7.528(4) Å , β = 111.36(5)°. The S2N2 ring of the centrosymmetrical complex is bonded via its nitrogen atoms to two AlBr3 units thus completing coordination tetrahedra around the Al atoms. Bond distances and angles within the S2N2 ring are d(S-N) = 1.629(13) and 1.651(13) Å, ∢ (S-N-S) = 95.8, and ∢ (N-S-N) - 84.2°. Whereas the S-N bond lengths agree closely with those of free S2N2, the angle at N is enlarged by ca. 5° and the angle at S is decreased by ca. 5°. The sulfur atoms form two close S···Br contacts of length 3.149 (intramolecular) and 3.193 (intermolecular) Å , respectively. The intermolecular attractive nonbonded S···Br interactions tie the complexes together in a way that leads to infinite chains which run parallel to the crystallographic z axis


2015 ◽  
Vol 233-234 ◽  
pp. 513-516 ◽  
Author(s):  
A.P. Safronov ◽  
Galina V. Kurlyandskaya ◽  
S.M. Bhagat ◽  
I.V. Beketov ◽  
A.M. Murzakaev ◽  
...  

Spherical nickel nanoparticles were prepared by the electrical explosion of wire. The as-prepared nanoparticles were modified immediately after fabrication at room temperature in order to provide tunable surface properties with focus on the development of composites filled with nanoparticles. Following liquid modificators were used: hexane, toluene and the solution of polystyrene in toluene. In one case the surface modification by carbon was made in gas phase as a result of hydrocarbon injection. The average size of the nanoparticles was about 50 nm and unit cell parameters were close to 0.351 nm. Detailed characterization was done by X-ray diffraction, transmission electron microscopy, and magnetization measurements. Sphericity was also checked using microwave resonant absorption.


1989 ◽  
Vol 44 (1) ◽  
pp. 5-8
Author(s):  
Michel Mégnamisi-Bélombé

Abstract trans-Dichloro(ethanedial-dioximato)(ethanediaI-dioxime)rhodium (III), RhCl2(GH)(GH2), has been synthesized and its structure determined by single crystal X-ray diffraction at room temperature. C4H7Cl2N4O4Rh, Mr = 348.94. monoclinic space group P21/ɑ; a = 10.543(3), b = 8.363(2), c = 11.512(3)Å ; β = 92.79(2)°; V = 1024Å3; Z = 4; Dc = 2.26 Mg m-3. Final Rw = 0.075 for 2035 reflections and 139 parameters. The coordination geometry around Rh is a dis­torted (4+2) octahedron, with four chelating N atoms lying in the equatorial plane and the two Cl atoms in the apical positions. The H atoms of the oxime groups are involved in relatively weak intramolecular O-H-O bridgings, as well as in very strong intermolecular bridgings which extend throughout the crystal structure and propagate nearly parallel to the [101] crystallographic direction.


A complex consisting of one molecule of 5-bromouridine ( BUR ) and one molecule of di­methylsulphoxide ( DMSO ) has been prepared in the form of monoclinic crystals. The unit cell parameters are as follows, a = 13⋅65 ± 0⋅01, b = 4.820 ± 0⋅005, c = 12⋅09 ± 0⋅01 Å, β = 91⋅8 ± 0.1°, space group P 2 1 . X-ray diffraction data ( ⋋ = 1⋅5418 Å) for 1389 independent reflexions were collected and the structure was determined from Patterson syntheses which gave the coordinates of the bromine and sulphur atoms. Fourier syntheses followed by least-squares refinement (including anisotropic temperature parameters) reduced the agreement index R to 0⋅067. The bond lengths and angles for each molecule are given, and it is shown that hydrogen bonds are formed between the oxygen atom of the DMSO molecule and the 03' and 05' of the BUR molecules. A comparison is made between the conformation of the BUR molecule in this complex and that of the same molecule in two other structures.


1998 ◽  
Vol 63 (3) ◽  
pp. 356-362 ◽  
Author(s):  
Svetlana Pakhomova ◽  
Jan Ondráček ◽  
František Jursík

Single-crystal X-ray diffraction study established the dimeric [Cu2(ohb-(S)-Ala)2] structure (ohb-(S)-Ala = N-(2-hydroxybenzyl-(S)-alaninate). The complex crystallizes in the tetragonal space group P43212 with a = b = 8.849(1) Å, c = 24.913(2) Å, V = 1950.8(3) Å3, Z = 8. The Cu(II) ion has distorted square-pyramidal geometry with the equatorial positions occupied by three oxygen and one nitrogen atom. Each copper atom is weakly coordinated at the apical position by carbonyl oxygen atom of the neighbouring molecule at the distance 2.329(2) Å. The Cu-Cu separation 3.0204(7) Å and the Cu-O3-Cu angle 100.8(1)° lead to antiferromagnetic coupling (at room temperature μeff = 1.35 μB). The O1-Cu-O3 angle (154.9(1)°) indicates distortion of the square pyramid toward a trigonal bipyramid (t = 0.23).


2009 ◽  
Vol 24 (3) ◽  
pp. 250-253 ◽  
Author(s):  
Peter Varlashkin

The room temperature powder pattern of lapatinib ditosylate monohydrate (active ingredient in Tykerb used to treat refractory breast cancer) was indexed and the cell from the single crystal X-ray diffraction structure was refined using the experimental capillary data. Unit-cell parameters for the orthorhombic compound with space group Pbca refined from powder diffraction data are a=9.6850±0.0009 Å, b=29.364±0.003 Å, and c=30.733±0.003 Å, α=β=γ=90°, z=8, V=8740.1 Å3. Values of 2θ, d, I, and Miller indices are reported.


1993 ◽  
Vol 71 (3) ◽  
pp. 331-334 ◽  
Author(s):  
Martin K. Ehlert ◽  
Alan Storr ◽  
Robert C. Thompson ◽  
Frederick W. B. Einstein ◽  
Raymond J. Batchelor

Room temperature and low-temperature (110–140 K) powder diffractograms have been obtained for the polymeric compounds [Cu(4-Xpz)2]x (where X = H, CH3, Cl, and Br), and values of the unit cell parameters (orthorhombic, space group Ibam) a, b, and c have been obtained at both high and low temperatures. A single crystal X-ray diffraction study of the X = H compound at 116 K was completed and the results compared with a published study done at room temperature. The structures of these complexes involve extended chains of pyrazolate-bridged copper ions extending along the c crystallographic axis. The X-ray studies indicate little change in the c parameter with decreasing temperature and small but significant changes in the a or b parameters reflecting changes in interchain packing. This study permits some evaluation of how structural parameters are affected by these variations in interchain packing and how these variations may be affecting the magnitude of magnetic exchange in the compounds.


Sign in / Sign up

Export Citation Format

Share Document