scholarly journals High-Pressure Structural Behavior and Equation of State of Kagome Staircase Compound, Ni3V2O8

Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 910
Author(s):  
Daniel Diaz-Anichtchenko ◽  
Robin Turnbull ◽  
Enrico Bandiello ◽  
Simone Anzellini ◽  
Daniel Errandonea

We report on high-pressure synchrotron X-ray diffraction measurements on Ni3V2O8 at room-temperature up to 23 GPa. According to this study, the ambient-pressure orthorhombic structure remains stable up to the highest pressure reached in the experiments. We have also obtained the pressure dependence of the unit-cell parameters, which reveals an anisotropic compression behavior. In addition, a room-temperature pressure–volume third-order Birch–Murnaghan equation of state has been obtained with parameters: V0 = 555.7(2) Å3, K0 = 139(3) GPa, and K0′ = 4.4(3). According to this result, Ni3V2O8 is the least compressible kagome-type vanadate. The changes of the crystal structure under compression have been related to the presence of a chain of edge-sharing NiO6 octahedral units forming kagome staircases interconnected by VO4 rigid tetrahedral units. The reported results are discussed in comparison with high-pressure X-ray diffraction results from isostructural Zn3V2O8 and density-functional theory calculations on several isostructural vanadates.

2020 ◽  
Vol 34 (34) ◽  
pp. 2050393
Author(s):  
Lun Xiong ◽  
Bin Li ◽  
Bi Liang ◽  
Jinxia Zhu ◽  
Hong Yi ◽  
...  

The equation of state (EOS) of HfC and nanosized TiC at high pressure has been studied by means of synchrotron radiation X-ray diffraction (XRD) in a diamond anvil cell (DAC) at ambient temperature, and density functional theory (DFT) calculations. XRD analysis showed that the cubic structure of HfC and nanosized TiC maintained to the maximum pressures. The XRD data yield a bulk modulus [Formula: see text] GPa with [Formula: see text] of HfC. In addition, the bulk modulus of nanosized TiC derived from XRD data is [Formula: see text] GPa with [Formula: see text].


1997 ◽  
Vol 499 ◽  
Author(s):  
Allen C. Ho ◽  
Maurice K. Granger ◽  
Arthur L. Ruoff

ABSTRACTThe equation of state (EOS) of Li3N has been determined by energy-dispersive x-ray diffraction (EDXD) using synchrotron radiation up to 35 GPa at ambient temperature. Both the hexagonal D6h4(P63/mmc) and the hexagonal D6h1(P6/mmm) phases were present at ambient pressure. The D6h1 -structure completely transforms into the D6h4 -structure at modest pressure. The change in Gibb's free energy as a function of pressure for Li3N was calculated using the experimental EOS.


Author(s):  
Lun Xiong ◽  
Pu Tu ◽  
Yongqing Hu ◽  
Xiang Hou ◽  
Shiyun Wu ◽  
...  

The equation of state (EOS) of mixture of Li[Formula: see text]Mn[Formula: see text]Co[Formula: see text]Ni[Formula: see text]O2 and LiNi[Formula: see text] Co[Formula: see text]Mn[Formula: see text]Al[Formula: see text]O2 was studied by synchrotron radiation X-ray diffraction (XRD) at room-temperature in a diamond anvil cell (DAC). The results showed that the hexagonal structure is maintained to the highest pressure of 23.1 GPa. The bulk modulus and its first derivative obtained from XRD data are [Formula: see text] GPa and [Formula: see text], respectively. In addition, we have investigated the high-pressure electrical conductivity of the mixture of Li[Formula: see text]Mn[Formula: see text]Co[Formula: see text]Ni[Formula: see text]O2 and LiNi[Formula: see text]Co[Formula: see text]Mn[Formula: see text]Al[Formula: see text]O2 to 22.9 GPa in a DAC. It is found that the resistance decreases with the increase of pressure and changes exponentially.


2019 ◽  
Vol 72 (2) ◽  
pp. 87 ◽  
Author(s):  
Hiroshi Abe ◽  
Takahiro Takekiyo ◽  
Yukihiro Yoshimura ◽  
Nozomu Hamaya ◽  
Shinichiro Ozawa

Crystal polymorphs and multiple crystallization pathways of a room-temperature ionic liquid (RTIL) were observed only under high pressure (HP). The RTIL was 1-ethyl-3-methylimidazolium nitrate, [C2mim][NO3]. The HP-crystal polymorphs were related to conformations of the C2mim+ cation, and the HP-crystal pathways determined by the presence or absence of the planar′ (P′) conformation of the C2mim+ cation were switched at the bifurcation pressure (PB). Above PB, modulated crystal structures derived from the HP-inherent P′ conformer. Simultaneous X-ray diffraction and differential scanning calorimetry measurements, accompanied by optical microscope observations, confirmed the normal low-temperature crystallization of [C2mim][NO3] under ambient pressure.


2015 ◽  
Vol 29 (25n26) ◽  
pp. 1542024 ◽  
Author(s):  
W. M. Li ◽  
Q. Q. Liu ◽  
Y. Liu ◽  
S. M. Feng ◽  
X. C. Wang ◽  
...  

The [Formula: see text] sample with the nominal composition was synthesized. Powder X-ray diffraction (XRD) experiments confirm that it crystallizes in an orthorhombic structure with space group Immm. The synchrotron powder XRD results suggest that the crystal structure of [Formula: see text] keeps stable under pressure up to 34 GPa at room temperature with nearly isotropic compressibility. The equation of state for [Formula: see text] was obtained. The results offer opportunities to further synthesize and research [Formula: see text] superconductor with tetragonal [Formula: see text] structure.


Author(s):  
Daniel Diaz-Anichtchenko ◽  
Robin Turnbull ◽  
Enrico Bandiello ◽  
Simone Anzellini ◽  
Srungarpu N. Achary ◽  
...  

The high pressure stability of α-Cu3V2O8 has been investigated via complementary high pressure synchrotron X-ray diffraction experiments and theoretical density functional theory calculations. The results of both experiment and theory...


2019 ◽  
Vol 6 (3) ◽  
pp. 524-531 ◽  
Author(s):  
Ye Yuan ◽  
Yinwei Li ◽  
Guoyong Fang ◽  
Guangtao Liu ◽  
Cuiying Pei ◽  
...  

Abstract The superconductivity of hydrides under high pressure has attracted a great deal of attention since the recent observation of the superconducting transition at 203 K in strongly compressed H2S. It has been realized that the stoichiometry of hydrides might change under high pressure, which is crucial in understanding the superconducting mechanism. In this study, PH3 was studied to understand its superconducting transition and stoichiometry under high pressure using Raman, IR and X-ray diffraction measurements, as well as theoretical calculations. PH3 is stable below 11.7 GPa and then it starts to dehydrogenate through two dimerization processes at room temperature and pressures up to 25 GPa. Two resulting phosphorus hydrides, P2H4 and P4H6, were verified experimentally and can be recovered to ambient pressure. Under further compression above 35 GPa, the P4H6 directly decomposed into elemental phosphorus. Low temperature can greatly hinder polymerization/decomposition under high pressure and retains P4H6 up to at least 205 GPa. The superconductivity transition temperature of P4H6 is predicted to be 67 K at 200 GPa, which agrees with the reported result, suggesting that it might be responsible for superconductivity at higher pressures. Our results clearly show that P2H4 and P4H6 are the only stable P–H compounds between PH3 and elemental phosphorus, which is helpful for shedding light on the superconducting mechanism.


2013 ◽  
Vol 27 (15) ◽  
pp. 1362021 ◽  
Author(s):  
X. LI ◽  
Q. Q. LIU ◽  
W. HAN ◽  
Y. LIU ◽  
X. D. LI ◽  
...  

The bismuth rhodate BiRhO 3, which crystallizes in a perovskite structure, was synthesized under high-pressure and high-temperature conditions, using a 6–8 double stage multi-anvil apparatus. The synchrotron powder X-ray diffraction data suggest that the crystal structure of the BiRhO 3 perovskite is stable under pressures up to 34 GPa at room temperature with anisotropic compressibility. The equation of state for BiRhO 3 compound was obtained. The results offer opportunities for further research into the BiRhO 3 quantum compound with strong spin orbital coupling.


2017 ◽  
Vol 31 (25) ◽  
pp. 1745020 ◽  
Author(s):  
Jun Zhang ◽  
Zhen Yuan ◽  
Jian-Fa Zhao ◽  
Wen-Min Li ◽  
Ya-Ting Jia ◽  
...  

In this work, the structure stability of hexagonal Bi(PO[Formula: see text](H2O)[Formula: see text] has been investigated by high-pressure synchrotron X-ray diffraction measurements. The results show that the structure is stable within the pressure up to 18.3 GPa. The diffraction data are refined and the lattice constants [Formula: see text] and [Formula: see text] are determined, which is compressed by 6.3(7)% and 3.5(0)% within the experimental pressure, respectively. By fitting the pressure dependence of [Formula: see text] (unit cell volume divided by that at ambient pressure) with the second-order Birch equation of state, the bulk modulus [Formula: see text] is given to be about 87.1(0) GPa.


2014 ◽  
Vol 887-888 ◽  
pp. 311-314
Author(s):  
Xiu Mei Han ◽  
Yun Dong ◽  
Tian Bo Zhao ◽  
Xiao Ping Lin ◽  
Jing Luo ◽  
...  

The microstructures of the Mg-6Zn-2Y alloy solidified under high pressures were investigated using scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The room-temperature compression behavior was analyzed through experiments, showing that the microstructures of the alloys are consisted of α-Mg and quasicrystal I-Mg3Zn6Y phases. With solidification pressure increasing, the microstructures were refined, and the morphologies of the inter-dendritic secondary phase were improved from continuous networks into long-island and granule. The compression strength, yielding strength and compressibility were increased significantly corresponding with solidification pressure, from 259.02 MPa, 230.39 MPa and 18.3% under ambient pressure to 361.43 MPa, 272.25 MPa and 33.1% under high pressure of 6 GPa. The cleavage planes are flat, and the cleavage steps are straight under ambient pressure. However, the cleavage planes are small and rough under 4-6 GPa; tearing dimples occur in the tearing area, indicating that the degree of cleavage fracture decreases under high pressure.


Sign in / Sign up

Export Citation Format

Share Document