scholarly journals Development of a national core dataset for the Iranian ICU patients outcome prediction: a comprehensive approach

2018 ◽  
Vol 25 (2) ◽  
pp. 71-76 ◽  
Author(s):  
Alireza Atashi ◽  
Leila Ahmadian ◽  
Zahra Rahmatinezhad ◽  
Mirmohammad Miri ◽  
Najmeh Nazeri ◽  
...  

ObjectiveTo define a core dataset for intensive care unit (ICU) patients outcome prediction in Iran. This core data set will lead us to design ICU outcome prediction models with the most effective parameters.MethodsA combination of literature review, national survey and expert consensus meetings were used. First, a literature review was performed by a general search in PubMed to find the most appropriate models for intensive care mortality prediction and their parameters. Second, in a national survey, experts from a couple of medical centres in all parts of Iran were asked to comment on a list of items retrieved from the earlier literature review study. In the next step, a multi-disciplinary committee of experts was installed. In four meetings, each data item was examined separately and included/excluded by committee consensus.ResultsThe combination of the literature review findings and experts’ consensus resulted in a draft dataset including 26 data items. Ninety-two percent of data items in the draft dataset were retrieved from the literature study and the others were suggested by the experts. The final dataset of 24 data items covers patient history and physical examination, chemistry, vital signs, oxygenations and some more specific parameters.ConclusionsThis dataset was designed to develop a nationwide prognostic model for predicting ICU mortality and length of stay. This dataset opens the door for creating standardised approaches in data collection in the Iranian intensive care unit estimation of resource utility.

2020 ◽  
Author(s):  
Sujeong Hur ◽  
Ji Young Min ◽  
Junsang Yoo ◽  
Kyunga Kim ◽  
Chi Ryang Chung ◽  
...  

BACKGROUND Patient safety in the intensive care unit (ICU) is one of the most critical issues, and unplanned extubation (UE) is considered as the most adverse event for patient safety. Prevention and early detection of such an event is an essential but difficult component of quality care. OBJECTIVE This study aimed to develop and validate prediction models for UE in ICU patients using machine learning. METHODS This study was conducted an academic tertiary hospital in Seoul. The hospital had approximately 2,000 inpatient beds and 120 intensive care unit (ICU) beds. The number of patients, on daily basis, was approximately 9,000 for the out-patient. The number of annual ICU admission was approximately 10,000. We conducted a retrospective study between January 1, 2010 and December 31, 2018. A total of 6,914 extubation cases were included. We developed an unplanned extubation prediction model using machine learning algorithms, which included random forest (RF), logistic regression (LR), artificial neural network (ANN), and support vector machine (SVM). For evaluating the model’s performance, we used area under the receiver operator characteristic curve (AUROC). Sensitivity, specificity, positive predictive value negative predictive value, and F1-score were also determined for each model. For performance evaluation, we also used calibration curve, the Brier score, and the Hosmer-Lemeshow goodness-of-fit statistic. RESULTS Among the 6,914 extubation cases, 248 underwent UE. In the UE group, there were more males than females, higher use of physical restraints, and fewer surgeries. The incidence of UE was more likely to occur during the night shift compared to the planned extubation group. The rate of reintubation within 24 hours and hospital mortality was higher in the UE group. The UE prediction algorithm was developed, and the AUROC for RF was 0.787, for LR was 0.762, for ANN was 0.762, and for SVM was 0.740. CONCLUSIONS We successfully developed and validated machine learning-based prediction models to predict UE in ICU patients using electronic health record data. The best AUROC was 0.787, which was obtained using RF. CLINICALTRIAL N/A


Author(s):  
Raúl Rigo-Bonnin ◽  
Víctor-Daniel Gumucio-Sanguino ◽  
Xose-Luís Pérez-Fernández ◽  
Luisa Corral-Ansa ◽  
MariPaz Fuset-Cabanes ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Heidi T May ◽  
Joseph B Muhlestein ◽  
Benjamin D Horne ◽  
Kirk U Knowlton ◽  
Tami L Bair ◽  
...  

Background: Treatment for COVID-19 has created surges in hospitalizations, intensive care unit (ICU) admissions, and the need for advanced medical therapy and equipment, including ventilators. Identifying patients early on who are at risk for more intensive hospital resource use and poor outcomes could result in shorter hospital stays, lower costs, and improved outcomes. Therefore, we created clinical risk scores (CORONA-ICU and -ICU+) to predict ICU admission among patients hospitalized for COVID-19. Methods: Intermountain Healthcare patients who tested positive for SARS-CoV-2 and were hospitalized between March 4, 2020 and June 8, 2020 were studied. Derivation of CORONA-ICU risk score models used weightings of commonly collected risk factors and medicines. The primary outcome was admission to the ICU during hospitalization, and secondary outcomes included death and ventilator use. Results: A total of 451 patients were hospitalized for a SARS-CoV-2 positive infection, and 191 (42.4%) required admission to the ICU. Patients admitted to the ICU were older (58.2 vs. 53.6 years), more often male (61.3% vs. 48.5%), and had higher rates of hyperlipidemia, hypertension, diabetes, and peripheral arterial disease. ICU patients more often took ACE inhibitors, beta-blockers, calcium channel blockers, diuretics, and statins. Table 1 shows variables that were evaluated and included in the CORONA-ICU risk prediction models. Models adding medications (CORONA-ICU+) improved risk-prediction. Though not created to predict death and ventilator use, these models did so with high accuracy (Table 2). Conclusion: The CORONA-ICU and -ICU+ models, composed of commonly collected risk factors without or with medications, were shown to be highly predictive of ICU admissions, death, and ventilator use. These models can be efficiently derived and effectively identify high-risk patients who require more careful observation and increased use of advanced medical therapies.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Céline Gélinas ◽  
Mélanie Bérubé ◽  
Kathleen A. Puntillo ◽  
Madalina Boitor ◽  
Melissa Richard-Lalonde ◽  
...  

Abstract Background Pain assessment in brain-injured patients in the intensive care unit (ICU) is challenging and existing scales may not be representative of behavioral reactions expressed by this specific group. This study aimed to validate the French-Canadian and English revised versions of the Critical-Care Pain Observation Tool (CPOT-Neuro) for brain-injured ICU patients. Methods A prospective cohort study was conducted in three Canadian and one American sites. Patients with a traumatic or a non-traumatic brain injury were assessed with the CPOT-Neuro by trained raters (i.e., research staff and ICU nurses) before, during, and after nociceptive procedures (i.e., turning and other) and non-nociceptive procedures (i.e., non-invasive blood pressure, soft touch). Patients who were conscious and delirium-free were asked to provide their self-report of pain intensity (0–10). A first data set was completed for all participants (n = 226), and a second data set (n = 87) was obtained when a change in the level of consciousness (LOC) was observed after study enrollment. Three LOC groups were included: (a) unconscious (Glasgow Coma Scale or GCS 4–8); (b) altered LOC (GCS 9–12); and (c) conscious (GCS 13–15). Results Higher CPOT-Neuro scores were found during nociceptive procedures compared to rest and non-nociceptive procedures in both data sets (p < 0.001). CPOT-Neuro scores were not different across LOC groups. Moderate correlations between CPOT-Neuro and self-reported pain intensity scores were found at rest and during nociceptive procedures (Spearman rho > 0.40 and > 0.60, respectively). CPOT-Neuro cut-off scores ≥ 2 and ≥ 3 were found to adequately classify mild to severe self-reported pain ≥ 1 and moderate to severe self-reported pain ≥ 5, respectively. Interrater reliability of raters’ CPOT-Neuro scores was supported with intraclass correlation coefficients > 0.69. Conclusions The CPOT-Neuro was found to be valid in this multi-site sample of brain-injured ICU patients at various LOC. Implementation studies are necessary to evaluate the tool’s performance in clinical practice.


10.2196/23128 ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. e23128
Author(s):  
Pan Pan ◽  
Yichao Li ◽  
Yongjiu Xiao ◽  
Bingchao Han ◽  
Longxiang Su ◽  
...  

Background Patients with COVID-19 in the intensive care unit (ICU) have a high mortality rate, and methods to assess patients’ prognosis early and administer precise treatment are of great significance. Objective The aim of this study was to use machine learning to construct a model for the analysis of risk factors and prediction of mortality among ICU patients with COVID-19. Methods In this study, 123 patients with COVID-19 in the ICU of Vulcan Hill Hospital were retrospectively selected from the database, and the data were randomly divided into a training data set (n=98) and test data set (n=25) with a 4:1 ratio. Significance tests, correlation analysis, and factor analysis were used to screen 100 potential risk factors individually. Conventional logistic regression methods and four machine learning algorithms were used to construct the risk prediction model for the prognosis of patients with COVID-19 in the ICU. The performance of these machine learning models was measured by the area under the receiver operating characteristic curve (AUC). Interpretation and evaluation of the risk prediction model were performed using calibration curves, SHapley Additive exPlanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), etc, to ensure its stability and reliability. The outcome was based on the ICU deaths recorded from the database. Results Layer-by-layer screening of 100 potential risk factors finally revealed 8 important risk factors that were included in the risk prediction model: lymphocyte percentage, prothrombin time, lactate dehydrogenase, total bilirubin, eosinophil percentage, creatinine, neutrophil percentage, and albumin level. Finally, an eXtreme Gradient Boosting (XGBoost) model established with the 8 important risk factors showed the best recognition ability in the training set of 5-fold cross validation (AUC=0.86) and the verification queue (AUC=0.92). The calibration curve showed that the risk predicted by the model was in good agreement with the actual risk. In addition, using the SHAP and LIME algorithms, feature interpretation and sample prediction interpretation algorithms of the XGBoost black box model were implemented. Additionally, the model was translated into a web-based risk calculator that is freely available for public usage. Conclusions The 8-factor XGBoost model predicts risk of death in ICU patients with COVID-19 well; it initially demonstrates stability and can be used effectively to predict COVID-19 prognosis in ICU patients.


1990 ◽  
Vol 18 (10) ◽  
pp. 1111-1118 ◽  
Author(s):  
JUURGEN-HEINER SCHAUFER ◽  
ANDREAS MAURER ◽  
FRIEDERIKE JOCHIMSEN ◽  
CARSTEN EMDE ◽  
KARL WEGSCHEIDER ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Caitlin E. Coombes ◽  
Kevin R. Coombes ◽  
Naleef Fareed

Abstract Background In the intensive care unit (ICU), delirium is a common, acute, confusional state associated with high risk for short- and long-term morbidity and mortality. Machine learning (ML) has promise to address research priorities and improve delirium outcomes. However, due to clinical and billing conventions, delirium is often inconsistently or incompletely labeled in electronic health record (EHR) datasets. Here, we identify clinical actions abstracted from clinical guidelines in electronic health records (EHR) data that indicate risk of delirium among intensive care unit (ICU) patients. We develop a novel prediction model to label patients with delirium based on a large data set and assess model performance. Methods EHR data on 48,451 admissions from 2001 to 2012, available through Medical Information Mart for Intensive Care-III database (MIMIC-III), was used to identify features to develop our prediction models. Five binary ML classification models (Logistic Regression; Classification and Regression Trees; Random Forests; Naïve Bayes; and Support Vector Machines) were fit and ranked by Area Under the Curve (AUC) scores. We compared our best model with two models previously proposed in the literature for goodness of fit, precision, and through biological validation. Results Our best performing model with threshold reclassification for predicting delirium was based on a multiple logistic regression using the 31 clinical actions (AUC 0.83). Our model out performed other proposed models by biological validation on clinically meaningful, delirium-associated outcomes. Conclusions Hurdles in identifying accurate labels in large-scale datasets limit clinical applications of ML in delirium. We developed a novel labeling model for delirium in the ICU using a large, public data set. By using guideline-directed clinical actions independent from risk factors, treatments, and outcomes as model predictors, our classifier could be used as a delirium label for future clinically targeted models.


2020 ◽  
Author(s):  
Pan Pan ◽  
Yichao Li ◽  
Yongjiu Xiao ◽  
Bingchao Han ◽  
Longxiang Su ◽  
...  

BACKGROUND Patients with COVID-19 in the intensive care unit (ICU) have a high mortality rate, and methods to assess patients’ prognosis early and administer precise treatment are of great significance. OBJECTIVE The aim of this study was to use machine learning to construct a model for the analysis of risk factors and prediction of mortality among ICU patients with COVID-19. METHODS In this study, 123 patients with COVID-19 in the ICU of Vulcan Hill Hospital were retrospectively selected from the database, and the data were randomly divided into a training data set (n=98) and test data set (n=25) with a 4:1 ratio. Significance tests, correlation analysis, and factor analysis were used to screen 100 potential risk factors individually. Conventional logistic regression methods and four machine learning algorithms were used to construct the risk prediction model for the prognosis of patients with COVID-19 in the ICU. The performance of these machine learning models was measured by the area under the receiver operating characteristic curve (AUC). Interpretation and evaluation of the risk prediction model were performed using calibration curves, SHapley Additive exPlanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), etc, to ensure its stability and reliability. The outcome was based on the ICU deaths recorded from the database. RESULTS Layer-by-layer screening of 100 potential risk factors finally revealed 8 important risk factors that were included in the risk prediction model: lymphocyte percentage, prothrombin time, lactate dehydrogenase, total bilirubin, eosinophil percentage, creatinine, neutrophil percentage, and albumin level. Finally, an eXtreme Gradient Boosting (XGBoost) model established with the 8 important risk factors showed the best recognition ability in the training set of 5-fold cross validation (AUC=0.86) and the verification queue (AUC=0.92). The calibration curve showed that the risk predicted by the model was in good agreement with the actual risk. In addition, using the SHAP and LIME algorithms, feature interpretation and sample prediction interpretation algorithms of the XGBoost black box model were implemented. Additionally, the model was translated into a web-based risk calculator that is freely available for public usage. CONCLUSIONS The 8-factor XGBoost model predicts risk of death in ICU patients with COVID-19 well; it initially demonstrates stability and can be used effectively to predict COVID-19 prognosis in ICU patients.


Sign in / Sign up

Export Citation Format

Share Document