Evaluation of rainfall erosivity and impact forces using strain gauges

2016 ◽  
Vol 17 (4) ◽  
pp. 207-217 ◽  
Author(s):  
K. Vilayvong ◽  
N. Yasufuku ◽  
R. Ishikura
Author(s):  
Nicholas Vlajic ◽  
Ako Chijioke ◽  
Enrico Lucon

Instrumented impact testing allows the applicability of conventional Charpy tests to be extended toward assessing mechanical properties such as dynamic fracture toughness and dynamic tensile properties. In this work, we present design considerations for engineering instrumented strikers for Charpy V-notch impact testing. Specific attention is given to the mechanical and geometric features, as well as the placement of strain gauges and corresponding bridge circuits for instrumentation. These design considerations are intended to make the sensitivity invariant to the location and distribution of impact forces. The concepts presented in this work were applied to an actual instrumented striker, which was then statically calibrated. Data from this calibration indicate that the device has good repeatability, shows a linear response, and is relatively insensitive to impact location.


2019 ◽  
Vol 18 (8) ◽  
pp. 1739-1745 ◽  
Author(s):  
Gabriel Lazar ◽  
Alina Maria Coman ◽  
Georgiana Lacatusu ◽  
Ana Maria Macsim

2009 ◽  
Author(s):  
Anne M. Fullerton ◽  
Ann Marie Powers ◽  
Don C. Walker ◽  
Susan Brewton

2020 ◽  
Author(s):  
C. Mineo ◽  
E. Ridolfi ◽  
B. Moccia ◽  
F. Napolitano

Author(s):  
Tanja Grobecker-Karl ◽  
Kamran Orujov ◽  
Virgilia Klär ◽  
Matthias Karl

Author(s):  
Giovanni Pio Pucillo ◽  
Alessandro Carrabs ◽  
Stefano Cuomo ◽  
Adam Elliott ◽  
Michele Meo

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenjie Yan ◽  
Huei-Ru Fuh ◽  
Yanhui Lv ◽  
Ke-Qiu Chen ◽  
Tsung-Yin Tsai ◽  
...  

AbstractThere is an emergent demand for high-flexibility, high-sensitivity and low-power strain gauges capable of sensing small deformations and vibrations in extreme conditions. Enhancing the gauge factor remains one of the greatest challenges for strain sensors. This is typically limited to below 300 and set when the sensor is fabricated. We report a strategy to tune and enhance the gauge factor of strain sensors based on Van der Waals materials by tuning the carrier mobility and concentration through an interplay of piezoelectric and photoelectric effects. For a SnS2 sensor we report a gauge factor up to 3933, and the ability to tune it over a large range, from 23 to 3933. Results from SnS2, GaSe, GeSe, monolayer WSe2, and monolayer MoSe2 sensors suggest that this is a universal phenomenon for Van der Waals semiconductors. We also provide proof of concept demonstrations by detecting vibrations caused by sound and capturing body movements.


Sign in / Sign up

Export Citation Format

Share Document