scholarly journals Performance evaluation of masonry Infilled RC frame structures under lateral loads

2021 ◽  
Vol 73 (03) ◽  
pp. 219-234

Numerous studies on masonry infill panels have greatly contributed to the research of strength, stiffness and energy dissipation capacity of various buildings. If the effects of masonry panels are disregarded, structural damage will occur under any significant ground motion, and even lead to collapse of the entire structure. The mode of failure is strongly dependent on the masonry and RC frame interaction. This work proposes an evaluation method for determining the participation ratio of masonry infill panels on RC frames under lateral loads.

2019 ◽  
Vol 13 (1) ◽  
pp. 135-148 ◽  
Author(s):  
Christiana A. Filippou ◽  
Nicholas C. Kyriakides ◽  
Christis Z. Chrysostomou

Background: The behavior of masonry-infilled Reinforced Concrete (RC) frame structures during an earthquake, has attracted the attention of structural engineers since the 1950s. Experimental and numerical studies have been carried out to investigate the behavior of masonry-infilled RC frame under in-plane loading. Objective: This paper presents a numerical model of the behavior existing masonry-infilled RC frame that was studied experimentally at the University of Patra. The objective of the present study is to identify suitable numerical constitutive models for each component of the structural system in order to create a numerical tool to model the masonry infilled RC frames in-plane behavior by accounting the frame-infill separation. Methods: A 2D masonry-infilled RC frame was developed in DIANA Finite Element Analysis (FEA) software and an eigenvalue and nonlinear structural cyclic analyses were performed. It is a 2:3 scale three-story structure with non-seismic design and detailing, subjected to in-plane cyclic loading through displacement control analysis. Results: There is a good agreement between the numerical model and experimental results through a nonlinear cyclic analysis. It was found that the numerical model has the capability to predict the initial stiffness, the ultimate stiffness, the maximum shear-force capacity, cracking- patterns and the possible failure mode of masonry-infilled RC frame. Conclusion: Therefore, this model is a reliable model of the behavior of masonry-infilled RC frame under cyclic loading including the frame-infill separation (gap opening).


2018 ◽  
Vol 215 ◽  
pp. 01036
Author(s):  
Maidiawati ◽  
Jafril Tanjung ◽  
Hamdeni Medriosa ◽  
Yulia Hayati

Many researchers have performed a lot of studies of the seismic behavior reinforced concrete (RC) frame with masonry infill. They found that masonry infill affects the lateral strength, stiffness and ductility performance of the RC frame structures. However, when openings appeared in the panel infill for door and windows, the responses of the overall structure are entirely changed. The primary purpose of this study is to experimentally investigate the behavior of brick infilled RC frames possessing single opening and two openings. Four specimens of 1/4-scale single bay RC frames with brick infills were made that were one bare frame, one frame with full infill and two frames with infills having a central opening and two openings with the opening ratio of 25%. The specimens were tested under lateral reversed cyclic loads. Consequently, different responses of failure mechanism, lateral strength, stiffness and energy dissipated were observed among the specimens. The brick full infill failed in shear with propagation cracks in central part of the panel, but in the case of the infills with single and two openings, the cracks were dominated at the corners of the openings. The in-plane strength, stiffness and dissipated energy of infilled frames decreased when openings appeared in the panel. However, the seismic performance of brick infilled frame with the opening of 25% of panel area is better than those of bare frame. The brick infilled frames with a central opening and two openings are similar in lateral strength and dissipated energy. It seems that area and position of the openings control the seismic response to the overall infilled frame structure of the openings


2017 ◽  
Vol 23 ◽  
pp. 72-87 ◽  
Author(s):  
Majid Ghaderi Garakani ◽  
Saeed Mahjoubi ◽  
Shervin Maleki

Staircases in reinforced concrete (RC) frame structures have suffered severe damages in past earthquakes, despite being regarded as the main means of egress during emergencies. To make sure that staircases perform as safe passages in strong earthquakes, the performance of RC stair structures should be scrutinized under major earthquakes. In this research at first, staircases were simulated as shell elements in RC frames and analyzed under gravity loads in order to find the maximum forces and moments. In the second step, the influence of staircases on the structural behavior of RC frame structures under seismic loads was studied. The results showed that stairs act as a K-type bracing system. Furthermore, a parametric study was carried out and relations for calculating force and moment in stairs slabs that had been determined under gravity loads, were modified. In addition, affected areas of structure interacting with the stairs in an earthquake were distinguished.


2013 ◽  
Vol 51 ◽  
pp. 73-87 ◽  
Author(s):  
Alireza Mohyeddin ◽  
Helen M. Goldsworthy ◽  
Emad F. Gad

2011 ◽  
Vol 255-260 ◽  
pp. 193-197
Author(s):  
Jia Chao Zhang ◽  
Lei Ming Zhang ◽  
Xi La Liu

Reinforced concrete (RC) frame with masonry infill walls is a very common structural system in low and medium rise buildings. The infill walls are usually considered as non-structural components in the design or assessment of buildings. However, many damages in earthquakes have shown that the infill walls can significantly change the structural response to seismic action. Consequently the evaluation of the seismic performance of RC frame with masonry infill walls becomes very important, and also turns to be a major challenge for structure engineers. In this paper a beam-and-column (BAC) macro model for walls is proposed to simulate the masonry infill walls in RC frames. In this model, the masonry panel is replaced by an equivalent rigid frame which is made up of some beam-and-column members. The geometric parameters of each member can be determined simply by equivalent stiffness combined with the original dimensions of wall panel. The physical characteristics are described directly by material properties of wall panel under investigation. To validate the rationality of proposed model, a masonry-infilled RC frame under cyclic reversed loading is analyzed by the proposed model. The results, including crack pattern, load versus displacement relation are then compared with the experiment response. Good agreements are found.


2010 ◽  
Vol 163-167 ◽  
pp. 3899-3903 ◽  
Author(s):  
Kun Lin ◽  
Yuri Z. Totoev ◽  
Hong Jun Liu

A new masonry system has been developed to improve the seismic behaviour of RC frame with masonry panels. In this system dry-stack masonry panels are built with masonry units capable of sliding in-plane of a panel. These masonry panels have reduced in-plane stiffness but increased frictional energy dissipation capacity compared with the traditional masonry panels. Under seismic or wind loads these panels do not detrimentally interfere with natural RC frame response but rather positively contribute to it mainly by increasing dumping. A cyclic test has been performed to evaluate the behaviour of this masonry system. Test results demonstrate that the new system can improve the seismic behaviour of RC frame structures with masonry panels.


2020 ◽  
Vol 10 (5) ◽  
pp. 1749
Author(s):  
Seung-Ho Choi ◽  
Jin-Ha Hwang ◽  
Sun-Jin Han ◽  
Hyo-Eun Joo ◽  
Hyun-Do Yun ◽  
...  

In recent years, a variety of strengthening methods have been developed to improve the seismic performance of reinforced concrete (RC) frame structures with non-seismic details. In this regard, this study proposes a new type of seismic strengthening method that compresses prefabricated precast concrete (PC) walls from the outside of a building. In order to verify the proposed method, a RC frame structure strengthened with precast walls was fabricated, and cyclic loading tests were performed. The results showed that specimens strengthened using the proposed method exhibited further improvements in strength, stiffness and energy dissipation capacity, compared to RC frame structures with non-seismic details. In addition, a nonlinear analysis method, capable of considering the flexural compression and shear behaviors of the walls, was suggested to analytically evaluate the structural behavior of the frame structures strengthened by the proposed method. Using this, an analysis model for frame structures strengthened with precast walls was proposed. Through the proposed model, the analysis and test results were compared in relation to stiffness, strength, and energy dissipation capacity. Then, the failure mode of the column was evaluated based on the pushover analysis. In addition, this study proposed a simplified analysis model that considered the placement of longitudinal reinforcements in shear walls.


2021 ◽  
Vol 11 (2) ◽  
pp. 841
Author(s):  
Fujian Yang ◽  
Guoxin Wang ◽  
Mingxin Li

Most reinforced concrete (RC) frames would exhibit different degrees of damage after mainshock excitations, and these mainshock-damaged RC (MD-RC) frames are highly vulnerable to severe damage or even complete collapse under aftershock excitations. In the present study, the effectiveness of utilizing soft steel damper (SSD) as a passive energy dissipation device for seismic retrofitting of MD-RC frame under aftershock actions was investigated. A common three-story RC frame in the rural area was employed and a numerical evaluation framework of retrofitting analysis of the MD-RC frame was also proposed. Based on proposed evaluation framework, nonlinear dynamic time history analysis of the MD-RC frame with and without retrofitting schemes was conducted to evaluate the retrofit effect of the retrofitting schemes on the MD-RC frame. The results revealed that the retrofitting schemes could effectively improve the natural vibration characteristics of the MD-RC frame, especially the first-order natural frequency with a maximum increase of nearly four times. The retrofit effect of the MD-RC frame under pulse-like aftershocks is better than non-pulse-like aftershocks and the retrofit effect of minor damage MD-RC frame is slightly better than that of severe damage. In addition, only retrofitting the bottom story of MD-RC frame might cause aggravate structural damage.


Sign in / Sign up

Export Citation Format

Share Document