Classification Model for Water Quality using Machine Learning Techniques

Author(s):  
Salisu Yusuf Muhammad ◽  
Mokhairi Makhtar ◽  
Azilawati Rozaimee ◽  
Azwa Abdul Aziz ◽  
Azrul Amri Jamal
2020 ◽  
Vol 24 (5) ◽  
pp. 1141-1160
Author(s):  
Tomás Alegre Sepúlveda ◽  
Brian Keith Norambuena

In this paper, we apply sentiment analysis methods in the context of the first round of the 2017 Chilean elections. The purpose of this work is to estimate the voting intention associated with each candidate in order to contrast this with the results from classical methods (e.g., polls and surveys). The data are collected from Twitter, because of its high usage in Chile and in the sentiment analysis literature. We obtained tweets associated with the three main candidates: Sebastián Piñera (SP), Alejandro Guillier (AG) and Beatriz Sánchez (BS). For each candidate, we estimated the voting intention and compared it to the traditional methods. To do this, we first acquired the data and labeled the tweets as positive or negative. Afterward, we built a model using machine learning techniques. The classification model had an accuracy of 76.45% using support vector machines, which yielded the best model for our case. Finally, we use a formula to estimate the voting intention from the number of positive and negative tweets for each candidate. For the last period, we obtained a voting intention of 35.84% for SP, compared to a range of 34–44% according to traditional polls and 36% in the actual elections. For AG we obtained an estimate of 37%, compared with a range of 15.40% to 30.00% for traditional polls and 20.27% in the elections. For BS we obtained an estimate of 27.77%, compared with the range of 8.50% to 11.00% given by traditional polls and an actual result of 22.70% in the elections. These results are promising, in some cases providing an estimate closer to reality than traditional polls. Some differences can be explained due to the fact that some candidates have been omitted, even though they held a significant number of votes.


2020 ◽  
Vol 10 (18) ◽  
pp. 6527 ◽  
Author(s):  
Omar Sharif ◽  
Mohammed Moshiul Hoque ◽  
A. S. M. Kayes ◽  
Raza Nowrozy ◽  
Iqbal H. Sarker

Due to the substantial growth of internet users and its spontaneous access via electronic devices, the amount of electronic contents has been growing enormously in recent years through instant messaging, social networking posts, blogs, online portals and other digital platforms. Unfortunately, the misapplication of technologies has increased with this rapid growth of online content, which leads to the rise in suspicious activities. People misuse the web media to disseminate malicious activity, perform the illegal movement, abuse other people, and publicize suspicious contents on the web. The suspicious contents usually available in the form of text, audio, or video, whereas text contents have been used in most of the cases to perform suspicious activities. Thus, one of the most challenging issues for NLP researchers is to develop a system that can identify suspicious text efficiently from the specific contents. In this paper, a Machine Learning (ML)-based classification model is proposed (hereafter called STD) to classify Bengali text into non-suspicious and suspicious categories based on its original contents. A set of ML classifiers with various features has been used on our developed corpus, consisting of 7000 Bengali text documents where 5600 documents used for training and 1400 documents used for testing. The performance of the proposed system is compared with the human baseline and existing ML techniques. The SGD classifier ‘tf-idf’ with the combination of unigram and bigram features are used to achieve the highest accuracy of 84.57%.


2020 ◽  
Vol 13 (1-2) ◽  
pp. 43-52
Author(s):  
Boudewijn van Leeuwen ◽  
Zalán Tobak ◽  
Ferenc Kovács

AbstractClassification of multispectral optical satellite data using machine learning techniques to derive land use/land cover thematic data is important for many applications. Comparing the latest algorithms, our research aims to determine the best option to classify land use/land cover with special focus on temporary inundated land in a flat area in the south of Hungary. These inundations disrupt agricultural practices and can cause large financial loss. Sentinel 2 data with a high temporal and medium spatial resolution is classified using open source implementations of a random forest, support vector machine and an artificial neural network. Each classification model is applied to the same data set and the results are compared qualitatively and quantitatively. The accuracy of the results is high for all methods and does not show large overall differences. A quantitative spatial comparison demonstrates that the neural network gives the best results, but that all models are strongly influenced by atmospheric disturbances in the image.


2019 ◽  
Vol 20 (1) ◽  
pp. 28-45
Author(s):  
Umair Ahmed ◽  
Rafia Mumtaz ◽  
Hirra Anwar ◽  
Sadaf Mumtaz ◽  
Ali Mustafa Qamar

Abstract The rapid urbanization and industrial development have resulted in water contamination and water quality deterioration at an alarming rate, deeming its quick, inexpensive and accurate detection imperative. Conventional methods to measure water quality are lengthy, expensive and inefficient, including the manual analysis process carried out in a laboratory. The research work in this paper focuses on the problem from various perspectives, including the traditional methods of determining water quality to gain insight into the problem and the analysis of state-of-the-art technologies, including Internet of Things (IoT) and machine learning techniques to address water quality. After analyzing the currently available solutions, this paper proposes an IoT-based low-cost system employing machine learning techniques to monitor water quality in real time, analyze water quality trends and detect anomalous events such as intentional contamination of water.


2021 ◽  
Author(s):  
Thanakorn Poomkur ◽  
Thakerng Wongsirichot

The coronavirus disease of 2019 (COVID-19) has been declared a pandemic and has raised worldwide concern. Lung inflammation and respiratory failure are commonly observed in moderate-to-severe cases. Chest X-ray imaging is compulsory for diagnosis, and interpretation is commonly performed by skilled medical specialists. Many studies have been conducted using machine learning approaches such as Deep Learning (DL) with acceptable accuracy. However, other dimensions such as computational time were less discussed. Thus, our work is motivated to design anew computer-aided diagnosis (CADx) tool for identifying chest X-ray images of COVID-19 infection using machine learning techniques including Decision Tree (DT), Support Vector Machine (SVM), and Neural Networks (NNs). Our work is designed with the concept of multi-layer classification architecture and performs with minimal computational time and acceptable classification results. First, image segmentation, image enhancement and feature extraction techniques are performed. Second, machine learning techniques are selected based on classification performance. Finally, selected machine learning techniques are assembled into a multi-layer hybrid classification model for COVID-19 (MLHC-COVID-19). Specifically, the MLHC-COVID-19 consists of two layers, Layer I: Healthy and Unhealthy; Layer II: COVID-19 and non-COVID-19.


2019 ◽  
Vol 11 (6) ◽  
pp. 617 ◽  
Author(s):  
Sidrah Hafeez ◽  
Man Wong ◽  
Hung Ho ◽  
Majid Nazeer ◽  
Janet Nichol ◽  
...  

Anthropogenic activities in coastal regions are endangering marine ecosystems. Coastal waters classified as case-II waters are especially complex due to the presence of different constituents. Recent advances in remote sensing technology have enabled to capture the spatiotemporal variability of the constituents in coastal waters. The present study evaluates the potential of remote sensing using machine learning techniques, for improving water quality estimation over the coastal waters of Hong Kong. Concentrations of suspended solids (SS), chlorophyll-a (Chl-a), and turbidity were estimated with several machine learning techniques including Artificial Neural Network (ANN), Random Forest (RF), Cubist regression (CB), and Support Vector Regression (SVR). Landsat (5,7,8) reflectance data were compared with in situ reflectance data to evaluate the performance of machine learning models. The highest accuracies of the water quality indicators were achieved by ANN for both, in situ reflectance data (89%-Chl-a, 93%-SS, and 82%-turbidity) and satellite data (91%-Chl-a, 92%-SS, and 85%-turbidity. The water quality parameters retrieved by the ANN model was further compared to those retrieved by “standard Case-2 Regional/Coast Colour” (C2RCC) processing chain model C2RCC-Nets. The root mean square errors (RMSEs) for estimating SS and Chl-a were 3.3 mg/L and 2.7 µg/L, respectively, using ANN, whereas RMSEs were 12.7 mg/L and 12.9 µg/L for suspended particulate matter (SPM) and Chl-a concentrations, respectively, when C2RCC was applied on Landsat-8 data. Relative variable importance was also conducted to investigate the consistency between in situ reflectance data and satellite data, and results show that both datasets are similar. The red band (wavelength ≈ 0.665 µm) and the product of red and green band (wavelength ≈ 0.560 µm) were influential inputs in both reflectance data sets for estimating SS and turbidity, and the ratio between red and blue band (wavelength ≈ 0.490 µm) as well as the ratio between infrared (wavelength ≈ 0.865 µm) and blue band and green band proved to be more useful for the estimation of Chl-a concentration, due to their sensitivity to high turbidity in the coastal waters. The results indicate that the NN based machine learning approaches perform better and, thus, can be used for improved water quality monitoring with satellite data in optically complex coastal waters.


Sign in / Sign up

Export Citation Format

Share Document