Energy Efficiency and Economy Analysis of a Range-extended Electric Bus in Different Chinese City Driving Cycles

Author(s):  
Xiaogang Wu ◽  
Chen Hu ◽  
Jitao Wang ◽  
Jiuyu Du
2015 ◽  
Vol 19 (6) ◽  
pp. 2233-2244
Author(s):  
Slobodan Misanovic ◽  
Zlatomir Zivanovic ◽  
Slaven Tica

Research in this paper comprised experimental determination of energy efficiency of different bus subsystems (diesel bus, trolleybus and fully electric bus) on chosen public transport route in Belgrade. Experimental measuring of energy efficiency of each bus type has been done based on the analysis of parameters of vehicle driving cycles between stops. Results of this analysis were basis for development of theoretical simulation model of energy efficiency. The model was latter compared with the results of simulation done by "Solaris bus & Coach" company for the chosen electric bus route. Based on demonstrated simulation, characteristics of electric bus batteries were defined, the method and dynamic of their recharge was suggested, as well as choice for other aggregates for drive system and technical characteristics for the electric buses were suggested.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaogang Wu ◽  
Jingfu Chen ◽  
Chen Hu

The heavy computational burden associated with the application of the traditional DP strategy to the energy management of range-extended electric buses poses a serious problem. On the basis of one Chinese typical urban bus driving cycle, an optimal control strategy is designed according to the SOC consumption trend, which is optimized by the DP algorithm. The dissipative energy and the energy-traction efficiency are our evaluation indices. The energy efficiencies of the powertrain system and components are analyzed by the energy flow diagram method. The results show that when the range-extended electric bus runs 35 Chinese typical urban bus driving cycles, the energy consumption and the energy efficiency of the powertrain system, which are optimized by the traditional DP strategy, can reach 2844.28 MJ and 31.29%, respectively. Compared with the traditional bus, the energy consumption can be reduced by 31.08%. The energy consumption and the energy efficiency of the powertrain system, which are based on one driving cycle optimal strategy, can reach 2857.69 MJ and 31.14%, respectively. The energy consumption is 0.47% higher than that with the traditional DP strategy, but the computation time is reduced by 96.85%.


Sign in / Sign up

Export Citation Format

Share Document