scholarly journals Dynamic Programming-Based Energy Management System for Range-Extended Electric Bus

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaogang Wu ◽  
Jingfu Chen ◽  
Chen Hu

The heavy computational burden associated with the application of the traditional DP strategy to the energy management of range-extended electric buses poses a serious problem. On the basis of one Chinese typical urban bus driving cycle, an optimal control strategy is designed according to the SOC consumption trend, which is optimized by the DP algorithm. The dissipative energy and the energy-traction efficiency are our evaluation indices. The energy efficiencies of the powertrain system and components are analyzed by the energy flow diagram method. The results show that when the range-extended electric bus runs 35 Chinese typical urban bus driving cycles, the energy consumption and the energy efficiency of the powertrain system, which are optimized by the traditional DP strategy, can reach 2844.28 MJ and 31.29%, respectively. Compared with the traditional bus, the energy consumption can be reduced by 31.08%. The energy consumption and the energy efficiency of the powertrain system, which are based on one driving cycle optimal strategy, can reach 2857.69 MJ and 31.14%, respectively. The energy consumption is 0.47% higher than that with the traditional DP strategy, but the computation time is reduced by 96.85%.

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 55586-55598 ◽  
Author(s):  
Klaus Kivekas ◽  
Jari Vepsalainen ◽  
Kari Tammi

Author(s):  
V. Nakhodov ◽  
O. Borychenko ◽  
A. Cherniavskyi

Statistics show that energy is one of the highest operating costs in a manufacturing enterprise. So, improving energy efficiency can lead to a significant increase in profits and reduce the impact of the enterprise on the environment. To increase the performance of energy efficiency activities, it is necessary to implement an energy management system. One of the components of this system is energy monitoring, which, in turn, is based on the periodic collection and analysis of data to assess the state of the monitoring objects in terms of energy efficiency. In this paper, the role and place of energy monitoring in the energy management system of an industrial enterprise are noted. The paper proposes the concept of creating energy monitoring system in industrial companies, which is based on the combination of a monitoring system based on specific energy consumption, and usage of group energy characteristics of production facilities. Implementing such energy monitoring systems will allow to conduct operational control of energy efficiency of production facilities by creating individual systems for monitoring energy efficiency, as well as successfully carry out such monitoring at the enterprise and its subdivisions over longer periods of time using specific energy consumption indicators. It also provides general guidelines for conducting energy monitoring. These guidelines were formed based on the results of studying various methods and scientific publications in the field of energy monitoring, as well as on the basis of practical experience in the development and implementation of energy management systems. Particular attention is paid to the issues of processing and analysis of information about the objects of energy monitoring of industrial enterprises. The practical application of the concept of creating energy monitoring systems envisages gradual improvement of the existing monitoring system based on the specific energy consumption, which will be further completely replaced with individual energy efficiency monitoring systems.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4539 ◽  
Author(s):  
Kumar ◽  
Brar ◽  
Singh ◽  
Nikolovski ◽  
Baghaee ◽  
...  

With the ever-growing power demand, the energy efficiency in commercial and residential buildings is a matter of great concern. Also, strategic energy auditing (SEA) and demand-side management (DSM) are cost-effective means to identify the requirements of power components and their operation in the energy management system. In a commercial or residential building, the major components are light sources and heating, ventilation, and air conditioning. The number of these components to be installed depends upon the technical and environmental standards. In this scenario, energy auditing (EA) allows identifying the methods, scope, and time for energy management, and it helps the costumers to manage their energy consumption wisely to reduce electricity bills. In the literature, most of the traditional strategies employed specific system techniques and algorithms, whereas, in recent years, load shifting-based DSM techniques were used under different operating scenarios. Considering these facts, the energy data in a year were collected under three different seasonal changes, i.e., severe cold, moderate, and severe heat for the variation in load demand under different environmental conditions. In this work, the energy data under three conditions were averaged, and the DSM schemes were developed for the operation of power components before energy auditing and after energy auditing. Moreover, the performance of the proposed DSM techniques was compared with the practical results in both scenarios, and, from the results, it was observed that the energy consumption reduced significantly in the proposed DSM approach.


Sensor Review ◽  
2014 ◽  
Vol 34 (2) ◽  
pp. 170-181 ◽  
Author(s):  
David Robinson ◽  
David Adrian Sanders ◽  
Ebrahim Mazharsolook

Purpose – This paper aims to describe research work to create an innovative, and intelligent solution for energy efficiency optimisation. Design/methodology/approach – A novel approach is taken to energy consumption monitoring by using ambient intelligence (AmI), extended data sets and knowledge management (KM) technologies. These are combined to create a decision support system as an innovative add-on to currently used energy management systems. Standard energy consumption data are complemented by information from AmI systems from both environment-ambient and process ambient sources and processed within a service-oriented-architecture-based platform. The new platform allows for building of different energy efficiency software services using measured and processed data. Four were selected for the system prototypes: condition-based energy consumption warning, online diagnostics of energy-related problems, support to manufacturing process lines installation and ramp-up phase, and continuous improvement/optimisation of energy efficiency. Findings – An innovative and intelligent solution for energy efficiency optimisation is demonstrated in two typical manufacturing companies, within one case study. Energy efficiency is improved and the novel approach using AmI with KM technologies is shown to work well as an add-on to currently used energy management systems. Research limitations/implications – The decision support systems are only at the prototype stage. These systems improved on existing energy management systems. The system functionalities have only been trialled in two manufacturing companies (the one case study is described). Practical implications – A decision support system has been created as an innovative add-on to currently used energy management systems and energy efficiency software services are developed as the front end of the system. Energy efficiency is improved. Originality/value – For the first time, research work has moved into industry to optimise energy efficiency using AmI, extended data sets and KM technologies. An AmI monitoring system for energy consumption is presented that is intended for use in manufacturing companies to provide comprehensive information about energy use, and knowledge-based support for improvements in energy efficiency. The services interactively provide suggestions for appropriate actions for energy problem elimination and energy efficiency increase. The system functionalities were trialled in two typical manufacturing companies, within one case study described in the paper.


2021 ◽  
Vol 64 (2) ◽  
pp. 89-94
Author(s):  
N. A. Cheremiskina ◽  
N. V. Shchukina ◽  
N. B. Loshkarev ◽  
V. V. Lavrov

One of the most energy-intensive industries is ferrous metallurgy. The metallurgical sector in industrially developed countries is reducing its specific energy consumption per one ton of products by approximately 1.0 – 1.5 % per annum. In Russia, obsolete technology is the main reason for the high-energy intensity of industrial product. Energy saving in industrial production is associated with production technology and the scope of fuel and energy resources consumption. Therefore, ways to improve energy efficiency focus on reducing energy consumption of any kind during a specific process in a specific process or thermal unit. Ensuring the economical operation of furnace units requires detailed preliminary and verification analyses, upgrading and introduction of state-of-the-art equipment. The study presents a flow diagram and features of thermal operation of a new drum-type chamber furnace for heating metal products for quenching. The technical parameters of the furnace, the results of the thermo-technical analysis, the heat balance and the specific fuel consumption as applicable to the created design are also presented. The flow diagram of the furnace has significant advantages in terms of the energy efficiency of fuel as compared to the roller and conveyor methods of metal transportation. Placing blanks on the drum significantly reduces the complexity of their transportation. Thanks to its small length the proposed design is compact and easy to place in a workshop. The use of a recuperative fuel burning device allows the efficient use of the heat of waste gases in the heating process. The proposed design and method of products transportation in the furnace working space can be used for the heat treatment of bars, pipes, strips, as well as rolled steel of various shapes.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2543 ◽  
Author(s):  
Zeyu Chen ◽  
Jiahuan Lu ◽  
Bo Liu ◽  
Nan Zhou ◽  
Shijie Li

The performance of lithium-ion batteries will inevitably degrade during the high frequently charging/discharging load applied in electric vehicles. For hybrid electric vehicles, battery aging not only declines the performance and reliability of the battery itself, but it also affects the whole energy efficiency of the vehicle since the engine has to participate more. Therefore, the energy management strategy is required to be adjusted during the entire lifespan of lithium-ion batteries to maintain the optimality of energy economy. In this study, tests of the battery performances under thirteen different aging stages are involved and a parameters-varying battery model that represents the battery degradation is established. The influences of battery aging on energy consumption of a given plug-in hybrid electric vehicle (PHEV) are analyzed quantitatively. The results indicate that the variations of capacity and internal resistance are the main factors while the polarization and open circuit voltage (OCV) have a minor effect on the energy consumption. Based on the above efforts, the optimal energy management strategy is proposed for optimizing the energy efficiency concerning both the fresh and aging batteries in PHEV. The presented strategy is evaluated by a simulation study with different driving cycles, illustrating that it can balance out some of the harmful effects that battery aging can have on energy efficiency. The energy consumption is reduced by up to 2.24% compared with that under the optimal strategy without considering the battery aging.


2021 ◽  
pp. 49-62
Author(s):  
O. Shevchenko ◽  
◽  
М. Shovkaliuk ◽  

The paper presents proposals for the development of programs to improve energy efficiency of educational institutions on the example of Igor Sikorsky Kyiv Polytechnic Institute. The energy management of the university is planned to be carried out through remote monitoring and creation of an automated workplace of the energy manager with integration into the educational process. The aim of the work is to improve innovative management methods of energy management, taking into account the relationship of energy sources, thermal protection of building fences, the parameters of the microclimate of the premises. The facilities, which are on the balance of the university, are a platform for research work, subject to the cooperation of the Energy Management Service with various structural units. As part of the development of the energy efficiency program, a technical and economic analysis of the proposed energy saving measures using engineering calculation methods was performed, as well as experimental measurements were performed. Statistical data processing, methods of grouping, comparison, generalization were used, and for the decision of separate problems modeling in specialized software products was carried out. With the involvement of the scientific potential of the university, a system of remote monitoring based on software is gradually introduced, which includes a geoinformation map of engineering networks and buildings, monitoring of parameters in the premises and an analytical unit with the ability to predict energy consumption. Key words: energy consumption, monitoring, automation, energy efficiency program, educational institution, buildings, thermal modernization


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401880923
Author(s):  
Yuefei Wang ◽  
Nan Zhang ◽  
Ye Wu ◽  
Baijun Liu ◽  
Yuan Wu

Electrical energy consumption is an important component of energy consumption for internal combustion engine vehicle, which directly affects the fuel economy. A bus-based electrical energy management system is built, and an electrical energy management strategy based on driving cycle recognition and electrical load perception is presented to achieve the refined management of vehicle energy. Six typical driving cycles are selected to establish an improved learning vector quantization neural network model for driving cycle recognition. The corresponding model training algorithm is designed by utilizing a similar driving cycle classification and the gradient optimization so that the better recognition accuracy and the less computation intensity can be obtained. An online recognition mechanism based on sliding time window is devised, and the optimal time window length is determined. To minimize fuel consumption, a dynamic optimal regulation strategy for the output power of the alternator and battery, which considers driving cycle recognition and electrical load perception, is proposed. Experimental results show that the strategy can effectually improve the vehicle fuel economy according to the driving cycle and the electrical load change and decrease the fuel consumption per 100 miles of vehicle.


2013 ◽  
Vol 432 ◽  
pp. 592-597
Author(s):  
Dao Fei Zhu ◽  
Jian Jun Wang ◽  
Hua Wang

It is an increasingly urgent demand for Cigarette manufacturers to promote energy conservation. Energy management system is an important tool to further reduce energy consumption and improve energy efficiency for cigarette manufacturers. In this paper, the design principles, the overall framework and the system function of the energy management system in a cigarette manufacturer are introduced. After energy management system is put into operation, comprehensive energy consumption per unit product is about 16.35% shorter than before. It has some reference value for the construction of other cigarette enterprise.


Sign in / Sign up

Export Citation Format

Share Document