Detecting oxytocin: mass spectrometry and PET-tracer development

2020 ◽  
Author(s):  
◽  
Anke Hering
2016 ◽  
Vol 9 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Michael G. Campbell ◽  
Joel Mercier ◽  
Christophe Genicot ◽  
Véronique Gouverneur ◽  
Jacob M. Hooker ◽  
...  

2017 ◽  
Vol 2017 (34) ◽  
pp. 5154-5162 ◽  
Author(s):  
Ulrike Filp ◽  
Anna L. Pees ◽  
Carlotta Taddei ◽  
Aleksandra Pekošak ◽  
Antony D. Gee ◽  
...  

2021 ◽  
Vol 14 (6) ◽  
pp. 530
Author(s):  
Marius Ozenil ◽  
Jonas Aronow ◽  
Marlon Millard ◽  
Thierry Langer ◽  
Wolfgang Wadsak ◽  
...  

The muscarinic cholinergic system regulates peripheral and central nervous system functions, and, thus, their potential as a therapeutic target for several neurodegenerative diseases is undoubted. A clinically applicable positron emission tomography (PET) tracer would facilitate the monitoring of disease progression, elucidate the role of muscarinic acetylcholine receptors (mAChR) in disease development and would aid to clarify the diverse natural functions of mAChR regulation throughout the nervous system, which still are largely unresolved. Still, no mAChR PET tracer has yet found broad clinical application, which demands mAChR tracers with improved imaging properties. This paper reviews strategies of mAChR PET tracer design and summarizes the binding properties and preclinical evaluation of recent mAChR tracer candidates. Furthermore, this work identifies the current major challenges in mAChR PET tracer development and provides a perspective on future developments in this area of research.


2006 ◽  
Vol 6 (Special Issue A) ◽  
pp. S102-S106 ◽  
Author(s):  
Rodney J. Hicks

2019 ◽  
Vol 55 (25) ◽  
pp. 3630-3633 ◽  
Author(s):  
Jian Yang ◽  
Ran Cheng ◽  
Hualong Fu ◽  
Jing Yang ◽  
Mohanraja Kumar ◽  
...  

In this report, we demonstrate that half-curcuminoid could be a better scaffold for PET tracer development.


2021 ◽  
Author(s):  
Klas Bratteby ◽  
Vladimir Shalgunov ◽  
Umberto Maria Battisti ◽  
Ida Nymann Petersen ◽  
Sara Lopes van den Broek ◽  
...  

Aliphatic nucleophilic substitution (S<sub>N</sub>2) with [<sup>18</sup>F]fluoride is the most widely applied method to prepare <sup>18</sup>F-labeled positron emission tomography (PET) tracers. Strongly basic conditions commonly used during <sup>18</sup>F-labeling procedures inherently limit or prohibit labeling of base-sensitive scaffolds. The high basicity stems from the tradition to trap [<sup>18</sup>F]fluoride on anion exchange cartridges and elute it afterwards with basic anions. This sequence is used to facilitate the transfer of [<sup>18</sup>F]fluoride from an aqueous to an aprotic organic, polar reaction medium, which is beneficial for S<sub>N</sub>2 reactions. Furthermore, this sequence also removes cationic radioactive contaminations from cyclotron-irradiated [<sup>18</sup>O]water from which [<sup>18</sup>F]fluoride is produced. In this study, we developed an efficient elution procedure resulting in low basicity that permits S<sub>N</sub>2 <sup>18</sup>F-labeling of base-sensitive scaffolds. Extensive screening of trapping and elution conditions (>1000 experiments) and studying their influence on the radiochemical yield (RCY) allowed us to identify a suitable procedure for this. Four PET tracers and three synthons could be radiolabeled in substantially higher RCYs (up to 2.5-fold), even from lower precursor amounts, using this procedure. Encouraged by these results, we applied our low basicity method to the radiolabeling of highly base-sensitive tetrazines, which cannot be labeled using state-of-art direct aliphatic <sup>18</sup>F-labeling procedures. Labeling succeeded in RCYs of up to 20%. We believe that our findings facilitate PET tracer development by opening the path towards simple and direct S<sub>N</sub>2 <sup>18</sup>F-fluorination of base-sensitive substrates.


2021 ◽  
Author(s):  
Klas Bratteby ◽  
Vladimir Shalgunov ◽  
Umberto Maria Battisti ◽  
Ida Nymann Petersen ◽  
Sara Lopes van den Broek ◽  
...  

Aliphatic nucleophilic substitution (S<sub>N</sub>2) with [<sup>18</sup>F]fluoride is the most widely applied method to prepare <sup>18</sup>F-labeled positron emission tomography (PET) tracers. Strongly basic conditions commonly used during <sup>18</sup>F-labeling procedures inherently limit or prohibit labeling of base-sensitive scaffolds. The high basicity stems from the tradition to trap [<sup>18</sup>F]fluoride on anion exchange cartridges and elute it afterwards with basic anions. This sequence is used to facilitate the transfer of [<sup>18</sup>F]fluoride from an aqueous to an aprotic organic, polar reaction medium, which is beneficial for S<sub>N</sub>2 reactions. Furthermore, this sequence also removes cationic radioactive contaminations from cyclotron-irradiated [<sup>18</sup>O]water from which [<sup>18</sup>F]fluoride is produced. In this study, we developed an efficient elution procedure resulting in low basicity that permits S<sub>N</sub>2 <sup>18</sup>F-labeling of base-sensitive scaffolds. Extensive screening of trapping and elution conditions (>1000 experiments) and studying their influence on the radiochemical yield (RCY) allowed us to identify a suitable procedure for this. Four PET tracers and three synthons could be radiolabeled in substantially higher RCYs (up to 2.5-fold), even from lower precursor amounts, using this procedure. Encouraged by these results, we applied our low basicity method to the radiolabeling of highly base-sensitive tetrazines, which cannot be labeled using state-of-art direct aliphatic <sup>18</sup>F-labeling procedures. Labeling succeeded in RCYs of up to 20%. We believe that our findings facilitate PET tracer development by opening the path towards simple and direct S<sub>N</sub>2 <sup>18</sup>F-fluorination of base-sensitive substrates.


2021 ◽  
pp. jnumed.120.256008
Author(s):  
Olivier Barret ◽  
Lei Zhang ◽  
David Alagille ◽  
Cristian C. Constantinescu ◽  
Christine Sandiego ◽  
...  

Author(s):  
Philippe Fragu

The identification, localization and quantification of intracellular chemical elements is an area of scientific endeavour which has not ceased to develop over the past 30 years. Secondary Ion Mass Spectrometry (SIMS) microscopy is widely used for elemental localization problems in geochemistry, metallurgy and electronics. Although the first commercial instruments were available in 1968, biological applications have been gradual as investigators have systematically examined the potential source of artefacts inherent in the method and sought to develop strategies for the analysis of soft biological material with a lateral resolution equivalent to that of the light microscope. In 1992, the prospects offered by this technique are even more encouraging as prototypes of new ion probes appear capable of achieving the ultimate goal, namely the quantitative analysis of micron and submicron regions. The purpose of this review is to underline the requirements for biomedical applications of SIMS microscopy.Sample preparation methodology should preserve both the structural and the chemical integrity of the tissue.


Sign in / Sign up

Export Citation Format

Share Document