scholarly journals CFD-Based Boundary Layer Prediction of Axisymmetric Bodies of Revolution

Author(s):  
Harshal Akolekar ◽  
David Pook ◽  
Dev Ranmuthugala
1985 ◽  
Vol 107 (3) ◽  
pp. 342-347 ◽  
Author(s):  
B. Bar-Haim ◽  
D. Weihs

The drag of axisymmetric bodies can be reduced by boundary-layer suction, which delays transition and can control separation. In this study, boundary-layer transition is delayed by applying a distributed suction technique. Optimization calculations were performed to define the minimal drag bodies at Reynolds numbers of 107 and 108. The saving in drag relative to optimal bodies with non-controlled boundary layers is shown to be 18 and 78 percent, at Reynolds numbers of 107 and 108, respectively.


1996 ◽  
Vol 40 (01) ◽  
pp. 22-27
Author(s):  
V. M. Pashin ◽  
V. A. Bushkovsky ◽  
E. L. Amromin

A method for solving inverse three-dimensional problems in hydromechanics is proposed which makes it possible to fit desired pressure distributions within design constraints immediately in the course of calculations. Examples of the method of application are given for bodies of revolution in flows at nonzero drift angles. These flows are not axisymmetric. Bodies of revolution in them are very handy examples of demonstrations of the method, and these examples have many technical applications.


1987 ◽  
Vol 109 (4) ◽  
pp. 997-1002 ◽  
Author(s):  
A. Nakayama ◽  
H. Koyama ◽  
F. Kuwahara

The two-phase boundary layer theory was adopted to investigate subcooled free-convection film boiling over a body of arbitrary shape embedded in a porous medium. A general similarity variable which accounts for the geometric effect on the boundary layer length scale was introduced to treat the problem once for all possible two-dimensional and axisymmetric bodies. By virtue of this generalized transformation, the set of governing equations and boundary conditions for an arbitrary shape reduces into the one for a vertical flat plate already solved by Cheng and Verma. Thus, the numerical values furnished for a flat plate may readily be tranlsated for any particular body configuration of concern. Furthermore, an explicit Nusselt number expression in terms of the parameters associated with the degrees of subcooling and superheating has been established upon considering physical limiting conditions.


1994 ◽  
Vol 116 (2) ◽  
pp. 200-211 ◽  
Author(s):  
Ryoji Kobayashi

The laminar-turbulent transition of three-dimensional boundary layers is critically reviewed for some typical axisymmetric bodies rotating in still fluid or in axial flow. The flow structures of the transition regions are visualized. The transition phenomena are driven by the compound of the Tollmien-Schlichting instability, the crossflow instability, and the centrifugal instability. Experimental evidence is provided relating the critical and transition Reynolds numbers, defined in terms of the local velocity and the boundary layer momentum thickness, to the local rotational speed ratio, defined as the ratio of the circumferential speed to the free-stream velocity at the outer edge of the boundary layer, for the rotating disk, the rotating cone, the rotating sphere and other rotating axisymmetric bodies. It is shown that the cross-sectional structure of spiral vortices appearing in the transition regions and the flow pattern of the following secondary instability in the case of the crossflow instability are clearly different than those in the case of the centrifugal instability.


1980 ◽  
Vol 24 (01) ◽  
pp. 60-65
Author(s):  
A. J. Smits ◽  
S. P. Law ◽  
P. N. Joubert

A wide range of experimental pressure distributions along axisymmetric bodies was compared with the results of Landweber's potential flow calculation method. Apart from certain viscous effects, some discrepancies were found, and it is shown that blockage corrections are of the right order to account for these discrepancies. The calculation method was also used to show that the pressure distribution over the nose of the body is largely independent of the tail shape, and vice versa.


1974 ◽  
Vol 18 (03) ◽  
pp. 153-168
Author(s):  
N. Matheson ◽  
P. N. Joubert

A simple so-called 'equivalent' body of revolution is proposed for reflex ship forms in an attempt to simplify calculation of the boundary layer over a ship's hull when there is no wavemaking. How­ever, exhaustive testing of one body of revolution did not produce a favorable comparison with re­sults for the corresponding reflex model. Gadd's recently proposed theory was used to calculate the boundary-layer development over the body of revolution. Reasonable agreement was obtained between the calculated and experimental results.


1982 ◽  
Vol 117 ◽  
pp. 211-231 ◽  
Author(s):  
Mostafa A. Foda

An analytical theory is developed to describe how negative pressure, (or ‘mud suction’, as it is sometimes referred to) develops underneath a body as it detaches itself from the ocean bottom. Biot's quasistatic equations of poro-elasticity are used to model the ocean bottom, and a general three-dimensional time-dependent analysis of the problem is worked out first using the boundary-layer approximation recently proposed by Mei and Foda. Then, explicit leading-order analytical solutions are presented for the problems of extrication of slender bodies as well as axisymmetric bodies from the ocean bottom.


Sign in / Sign up

Export Citation Format

Share Document