scholarly journals Sound generation by three-dimensional flapping wings during hovering flight

Author(s):  
Li Wang ◽  
Fang-Bao Tian
2014 ◽  
pp. 409-414
Author(s):  
Q Wang ◽  
J Goosen ◽  
F van Keulen

2019 ◽  
Vol 11 ◽  
pp. 175682931984612 ◽  
Author(s):  
Tao Yang ◽  
Mingjun Wei ◽  
Kun Jia ◽  
James Chen

It has been a challenge to simulate flexible flapping wings or other three-dimensional problems involving strong fluid–structure interactions. Solving a unified fluid–solid system in a monolithic manner improves both numerical stability and efficiency. The current algorithm considered a three-dimensional extension of an earlier work which formulated two-dimensional fluid–structure interaction monolithically under a unified framework for both fluids and solids. As the approach is extended from a two-dimensional to a three-dimensional configuration, a cell division technique and the associated projection process become necessary and are illustrated here. Two benchmark cases, a floppy viscoelastic particle in shear flow and a flow passing a rigid sphere, are simulated for validation. Finally, the three-dimensional monolithic algorithm is applied to study a micro-air vehicle with flexible flapping wings in a forward flight at different angles of attack. The simulation shows the impact from the angle of attack on wing deformation, wake vortex structures, and the overall aerodynamic performance.


2017 ◽  
Vol 13 (1) ◽  
pp. 016010 ◽  
Author(s):  
Biao Geng ◽  
Qian Xue ◽  
Xudong Zheng ◽  
Geng Liu ◽  
Yan Ren ◽  
...  

2019 ◽  
Vol 14 (2) ◽  
pp. 026006 ◽  
Author(s):  
Ho-Young Kim ◽  
Jong-Seob Han ◽  
Jae-Hung Han

2020 ◽  
Vol 104 ◽  
pp. 105944
Author(s):  
Peng Nian ◽  
Bifeng Song ◽  
Jianlin Xuan ◽  
Wenhui Zhou ◽  
Dong Xue

2014 ◽  
Vol 11 (92) ◽  
pp. 20130992 ◽  
Author(s):  
Leif Ristroph ◽  
Stephen Childress

Ornithopters, or flapping-wing aircraft, offer an alternative to helicopters in achieving manoeuvrability at small scales, although stabilizing such aerial vehicles remains a key challenge. Here, we present a hovering machine that achieves self-righting flight using flapping wings alone, without relying on additional aerodynamic surfaces and without feedback control. We design, construct and test-fly a prototype that opens and closes four wings, resembling the motions of swimming jellyfish more so than any insect or bird. Measurements of lift show the benefits of wing flexing and the importance of selecting a wing size appropriate to the motor. Furthermore, we use high-speed video and motion tracking to show that the body orientation is stable during ascending, forward and hovering flight modes. Our experimental measurements are used to inform an aerodynamic model of stability that reveals the importance of centre-of-mass location and the coupling of body translation and rotation. These results show the promise of flapping-flight strategies beyond those that directly mimic the wing motions of flying animals.


2014 ◽  
Vol 11 (91) ◽  
pp. 20130984 ◽  
Author(s):  
Bo Cheng ◽  
Jesse Roll ◽  
Yun Liu ◽  
Daniel R. Troolin ◽  
Xinyan Deng

Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.


Author(s):  
Nathan A Widdup ◽  
Li Wang ◽  
Fang-Bao Tian

The sound generated by two tandem arranged flexible wings in forward flight is numerically studied by using an immersed boundary method, at a Reynolds number of 100 and Mach number of 0.1. Three distinct cases are studied, encompassing a single wing and two tandem wings flapping in phase and out of phase. The sound generation of flapping wings is systematically studied by varying the wing flexibility (represented by the frequency ratio [Formula: see text]), structure-to-fluid mass ratio ([Formula: see text]), the phase difference (φ), and the gap ([Formula: see text]) between the two flapping wings. The results show that there is a direct correlation between the wing flexibility and sound generation for all cases considered. Specifically, for wings of low mass ratios ([Formula: see text]), an increase in flexibility resulted in a decrease in sound generation. For wings of high mass ratios ([Formula: see text]), an increase in flexibility resulted in higher sound output. The introduction of a second wing flapping in-phase resulted in an increase in aerodynamic features and sound generation, while the introduction of a second wing flapping out-of-phase experiences a decrease in sound output when compared to the in-phase case. In both cases, the effect of the wing flexibility on the sound production is similar to that of the single wing. An increase in flexibility is also found to have an impact on the plane of maximum sound pressure. For example, increasing flexibility resulted in a rotation of the plane of maximum sound pressure counter-clockwise relative to those at lower frequency ratios. Flexible wings with a structure-to-fluid mass ratio of unity and medium flexibility (i.e. [Formula: see text] and [Formula: see text]) are found to generate lower sound with high aerodynamic performance conserved.


Sign in / Sign up

Export Citation Format

Share Document