SCIMP: a novel TLR4 adaptor protein that fine-tunes inflammatory signalling in myeloid cells

2021 ◽  
Author(s):  
◽  
James E. B. Curson
2007 ◽  
Vol 8 (6) ◽  
pp. 619-629 ◽  
Author(s):  
Hiromitsu Hara ◽  
Chitose Ishihara ◽  
Arata Takeuchi ◽  
Takayuki Imanishi ◽  
Liquan Xue ◽  
...  

Inflammasome ◽  
2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Tom P. Monie ◽  
Joseph P. Boyle

AbstractDramatic advances in our understanding of the ultrastructure of the inflammasome and the molecular interactions involved in its assembly have recently been made. The adaptor protein ASC has been proposed to display prion-like activity that results in the formation of filamentous structures in the cell. These filamentouos structures can subsequently become inflammatory themselves if released into the extracellular space and then phagocytosed. Various groups have now utilised a variety of microscopy and structural approaches in order to visualise components of, and indeed the entire, inflammasome in both endogenous and overexpression systems. In this brief review we draw upon these new pieces of work to describe how our understanding of the global structure of the inflammasome has progressed in light of these new observations. In particular we begin by providing an initial perspective on the possible formation of small circular, wheel-like, oligomers resembling apoptosomes. We then address the current view that inflammasomes result from the formation of a much larger complex which may involve polymeric filaments. We discuss how these developments fit with recent theories of inflammatory signalling, what questions these advances raise, and propose key areas for further investigation.


Retrovirology ◽  
2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Oya Cingöz ◽  
Nicolas D. Arnow ◽  
Mireia Puig Torrents ◽  
Norbert Bannert

Abstract Background The genomes of HIV-2 and some SIV strains contain the accessory gene vpx, which carries out several functions during infection, including the downregulation of SAMHD1. Vpx is also commonly used in experiments to increase HIV-1 infection efficiency in myeloid cells, particularly in studies that investigate the activation of antiviral pathways. However, the potential effects of Vpx on cellular innate immune signaling is not completely understood. We investigated whether and how Vpx affects ISG responses in monocytic cell lines and MDMs during HIV-1 infection. Results HIV-1 infection at excessively high virus doses can induce ISG activation, although at the expense of high levels of cell death. At equal infection levels, the ISG response is potentiated by the presence of Vpx and requires the initiation of reverse transcription. The interaction of Vpx with the DCAF1 adaptor protein is important for the enhanced response, implicating Vpx-mediated degradation of a host factor. Cells lacking SAMHD1 show similarly augmented responses, suggesting an effect that is independent of SAMHD1 degradation. Overcoming SAMHD1 restriction in MDMs to reach equal infection levels with viruses containing and lacking Vpx reveals a novel function of Vpx in elevating innate immune responses. Conclusions Vpx likely has as yet undefined roles in infected cells. Our results demonstrate that Vpx enhances ISG responses in myeloid cell lines and primary cells independently of its ability to degrade SAMHD1. These findings have implications for innate immunity studies in myeloid cells that use Vpx delivery with HIV-1 infection.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1563-1563
Author(s):  
Andrea Schmidts ◽  
Dagmar Wider ◽  
Julia Felthaus ◽  
Manuel Hein ◽  
Dominik Schnerch ◽  
...  

Abstract Abstract 1563 Introduction: The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that regulates cell cycle progression. This is achieved by targeting various cell cycle regulators for proteasomal destruction. APC/C in conjunction with its adaptor protein Cdh1, both stabilizes G1-Phase (a pre-condition for an accurate cell cycle progression) and is involved in the induction of cell cycle arrest and differentiation. Further evidence suggests that Cdh1 is involved in the differentiation of a variety of cells such as neurons, myocytes, hepatocytes and lens epithelial cells. During differentiation Cdh1 interacts with the TGFb signaling pathway, targets Id2 for destruction and indirectly leads to accumulation of p27 by Skp2 degradation. We have been able to demonstrate that the expression of Cdh1 is decreased in both, AML cell lines and in primary blast samples carrying the translocation t(8;21), which consequently leads to an AML1/Eto fusion protein and is one of the most common chromosomal rearrangements in AML. Furthermore, we have data suggesting that APC/C-Cdh1 significantly influences the differentiation of malignant myeloid cells. Here, we have analyzed the expression of Cdh1, its target proteins and relevant cell cycle regulators during normal myeloid differentiation. Methods: A cytokine cocktail consisting of SCF (50ng/ml), IL-3 (5 ng/ml) and G-CSF (100 ng/ml) was used to induce differentiation of CD34+ cells into CD11b+ macrophage-like cells over seven days. Daily protein isolation, CD11b-FACS and FACS analysis of propidium iodide staining were performed to analyze Cdh1 status, differentiation kinetics and cell cycle distribution. In addition, we have established a Cdh1 knockdown in CD34+ cells by lentiviral vector mediated RNA interference. By means of GFP-cell-sorting the initially achieved transduction efficiency of 30% in CD34+ cells was increased to 70–80%. Results: The differentiation experiments carried out with normal CD34+ cells showed that after 7 days of stimulation the predominant majority of them had lost the CD34 marker and about 30% expressed CD11b on their surface confirming previous results. During the differentiation process an initial rise in Cdh1 levels, followed by a continuously high expression, was observed. Furthermore, we detected a downregulation of the Cdh1 target proteins Id2 and Skp2 and stable protein levels of p27. The cell cycle profile indicated an initial proliferation with an incremental G2/M-peak and at day 6 increasing apoptosis with a high Sub-G1-peak. In the transduced CD34+ cells we have been able to confirm by Western blotting analysis and RT-PCR that the CD34 positive cells harboring a Cdh1 shRNA had significantly decreased protein and RNA levels of Cdh1 compared to CD34 positive cells harboring a control shRNA against GFP. Analysis of the influence of Cdh1 knockdown on differentiation of CD34+ cells is ongoing and will be presented at the meeting. Conclusion: These results are consistent with the important role of Cdh1 in initiating differentiation and also show its sustained function in post mitotic myeloid cells. Studying the differentiation characteristics of CD34+ cells with a Cdh1 knockdown is likely to help to further determine its function. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 2112-2120 ◽  
Author(s):  
Rae-Kil Park ◽  
Kayvon D. Izadi ◽  
Yashwant M. Deo ◽  
Donald L. Durden

Cross-linking of Fc receptors for IgA, FcR (CD89), on monocytes/macrophages is known to enhance phagocytic activity and generation of oxygen free radicals. We provide evidence here that the FcR signals through the γ subunit of FcɛRI in U937 cells differentiated with interferon γ (IFNγ). Our results provide the first evidence that FcR-mediated signals modulate a multimolecular adaptor protein complex containing Grb2, Shc, SHIP, CrkL, Cbl, and SLP-76. Cross-linking of FcRI using anti-FcRI induces the phosphorylation of the γ subunit as detected by mobility retardation on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Stimulation of FcRI induced the tyrosine phosphorylation of Shc and increased the association of Grb2 with Shc and CrkL. Grb2 associates constitutively with Sos, and the latter undergoes mobility shift upon FcRI stimulation. The complex adapter proteins, Cbl and SLP-76, are physically associated in myeloid cells and both proteins undergo tyrosine phosphorylation upon FcR stimulation. These data indicate that the stimulation of FcR results in the modulation of adaptor complexes containing tyrosine-phosphorylated Cbl, Shc, SHIP, Grb2, and Crkl. Experiments performed with the Src kinase inhibitor, PP1, provide the first evidence that Src kinase activation is required for FcRI-induced production of superoxide anions and provide insight into the mechanism for FcR-mediated activation of downstream oxidant signaling in myeloid cells.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 2112-2120 ◽  
Author(s):  
Rae-Kil Park ◽  
Kayvon D. Izadi ◽  
Yashwant M. Deo ◽  
Donald L. Durden

Abstract Cross-linking of Fc receptors for IgA, FcR (CD89), on monocytes/macrophages is known to enhance phagocytic activity and generation of oxygen free radicals. We provide evidence here that the FcR signals through the γ subunit of FcɛRI in U937 cells differentiated with interferon γ (IFNγ). Our results provide the first evidence that FcR-mediated signals modulate a multimolecular adaptor protein complex containing Grb2, Shc, SHIP, CrkL, Cbl, and SLP-76. Cross-linking of FcRI using anti-FcRI induces the phosphorylation of the γ subunit as detected by mobility retardation on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Stimulation of FcRI induced the tyrosine phosphorylation of Shc and increased the association of Grb2 with Shc and CrkL. Grb2 associates constitutively with Sos, and the latter undergoes mobility shift upon FcRI stimulation. The complex adapter proteins, Cbl and SLP-76, are physically associated in myeloid cells and both proteins undergo tyrosine phosphorylation upon FcR stimulation. These data indicate that the stimulation of FcR results in the modulation of adaptor complexes containing tyrosine-phosphorylated Cbl, Shc, SHIP, Grb2, and Crkl. Experiments performed with the Src kinase inhibitor, PP1, provide the first evidence that Src kinase activation is required for FcRI-induced production of superoxide anions and provide insight into the mechanism for FcR-mediated activation of downstream oxidant signaling in myeloid cells.


2014 ◽  
Vol 162 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Sophie O’Halloran ◽  
Alicia O’Leary ◽  
Teun Kuijper ◽  
Eric J. Downer

Sign in / Sign up

Export Citation Format

Share Document