scholarly journals An Investigation of Groundwater Contamination around Nsukka Municipality Dumpsite using the Resistivity Method

Author(s):  
Olisah Nzemeka

An investigation using electrical resistivity method was conducted around a solid waste dumpsite at Nsukka in Nsukka L.G.A of Enugu State, Nigeria to investigate the level of groundwater contamination. Electrical Sounding (VES) and 2D resistivity imaging were used with a digital read out resistivity meter (ABEM SAS 1000) to acquire data in the area. A total of eight (8) sounding and six (6) 2D resistivity imagings were carried out in the area. A contaminant leachate plume was delineated in 2D resistivity sections as low resistivity zones while the VES shows the depth of aquifer. In 2D pseudosections where bluish colours with low resistivities (less than 20.80Ωm) with the depth ranging from 1.28m to 17.1m in the Line 1 and 2 are seen as contaminated zones. The rest of the lines are not contaminated because of their high resistivities (greater than 20.80Ωm). The result of the electrical resistivity survey also showed 4 - 5 layers geo-electric sections and an AA and AK type sounding curves. The VES result shows that VES 1A, 1B, 2A and 2B which are carried out on line 1 & 2 of the wenner lines showed signs of contamination with low resistivity values less than 20.80Ωm complementing the wenner results. The contamination has not yet got to where the aquifer is located on the lines. Since the depth to the aquifer ranges from 30.26m to 155.43m while maximum depth of contamination is 17.1m. It is believed that the leachate has not percolated down to the aquiferous zones as such aquifers are presumed to be free.

2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Olaide S Hammed ◽  
Wilfred N Igboama ◽  
M O Awoyemi ◽  
Julius O Fatoba ◽  
Morufu Aroyehun ◽  
...  

Electrical Resistivity survey was carried out with the aim of identifying the degree of soil corrosion associated with the sub soil of the Federal University Oye Ekiti phase II. The sub soil resistivity of the area was surveyed and evaluated using Ohmega resistivity meter. The sub soil resistivity parameters were used to delineate the degree of the sub soil corrosion. Four electrodes were inserted into the soil/rock using the Wenner profiling, vertical electrical sounding and Dipole- Dipole array along the traverses with a spacing of 5m and n =1 to 5.In this method, artificially generated electric current(I) was injected into the ground via two current electrodes while the resulting potential difference (V) is measured by another pair of electrodes. The survey revealed that the Southwest and Northwest regions of the study area were associated with high resistivity (200-500 Ω-m).This implies that the soil structure of the region is not corrosive, while the southeast region was associated with low resistivity (20-80 Ω-m) value which implies that the sub soil structure is corrosive. The degree of corrosion increases from the western to eastern part of the study area which may be due to bedrock topography. Of all the layers investigated, the topsoil layer is highly corrosive compare to other layers.


2021 ◽  
Vol 5 (1) ◽  
pp. 18
Author(s):  
Matthew Tersoo Tsepav ◽  
Aliyu Yahaya Badeggi ◽  
Obaje Nuhu George ◽  
Usman Yusuf Tanko ◽  
Ibrahim Samuel Ibbi

<p>Electrical resistivity method employing the Schlumberger array was used to occupy forty four (44) vertical electrical sounding points in Lapai town with the aim of determining the depth to aquifers, aquifer thicknesses and aquifer protective capacity. The G41 Geotron resistivity meter was used in obtaining the apparent resistivity data which was processed using Interpex 1XD resistivity interpretation software. The results revealed four lithologic sections which include top lateritic soil, sandy clay, fractured basement and fresh basement. Both confined and unconfined aquifers were identified within the area, with four classes of aquifer proactive capacities as high, moderate, weak and poor. While the aquifer at VES 20 was highly protected, twenty other aquifers were moderately protected, eight others had weak protection and fifteen aquifers were poorly protected. The aquifers were generally of good thicknesses and at varying reasonable depths, making them good reservoirs of water in appreciable quantity. The average aquifer thickness was estimated to be 48.36m while the average depth to aquifers was estimated to be 56.68m.</p>


Author(s):  
K. O. Ozegin

The ultimate aim of the electrical resistivity survey is to determine the resistivity distribution with depth on the basis of surface measurements of the apparent resistivity and to interpret it in terms of geology. Marble deposit was investigated with the application of electrical resistivity method using Vertical Electrical Sounding (VES) technique with the aim of characterising this deposit in parts of Okpella. Six (6) VES were acquired using the Schlumberger array for data acquisition with current electrode spacing varying from 1.0 to 150.0 m. The VES data obtained were interpreted using ipi2win Software. The results showed three layers indicating subsurface geologic sequence probed 26.4 m and beyond with clay/clayey sand (23.3 – 219.1 Ωm), sand (423 - 2040 Ωm) and marble (12661 - 404498 Ωm). The occurrence of marble deposit was revealed at VES points at 1, 2 and 5 in the studied area.  This study concluded that the study area had occurrence of the marble deposits, which would be of economic importance, if exploited.


Geophysics ◽  
2010 ◽  
Vol 75 (4) ◽  
pp. WA95-WA104 ◽  
Author(s):  
Dale F. Rucker ◽  
Meng H. Loke ◽  
Marc T. Levitt ◽  
Gillian E. Noonan

An electrical-resistivity survey was completed at the T tank farm at the Hanford nuclear site in Washington State, U.S.A. The purpose of the survey was to define the lateral extent of waste plumes in the vadose zone in and around the tank farm. The T tank farm consists of single-shell tanks that historically have leaked and many liquid-waste-disposal facilities that provide a good target for resistivity mapping. Given that the site is highly industrialized with near-surface metallic infrastructure that potentially could mask any interpretable waste plume, it was necessary to use the many wells around the site as long electrodes. To accommodate the long electrodes and to simulate the effects of a linear conductor, the resistivity inversion code was modified to assign low-resistivity values to the well’s location. The forward model within the resistivity code was benchmarked for accuracy against an analytic solution, and the inverse model was tested for its ability to recreate images of a hypothetical target. The results of the tank-farm field survey showed large, low-resistivity targets beneath the disposal areas that coincided with the conceptual hydrogeologic models developed regarding the releases. Additionally, in areas of minimal infrastructure, the long-electrode method matched the lateral footprint of a 3D surface-resistivity survey with reasonable fidelity. Based on these results, the long-electrode resistivity method may provide a new strategy for environmental characterization at highly industrialized sites, provided a sufficient number and density of wells exist.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charles Chibueze Ugbor ◽  
Ifeanyi Emmanuel Ikwuagwu ◽  
Osim Jethro Ogboke

AbstractThe study tries to utilize vertical electrical sounding (VES) and 2D resistivity tomography to evaluate the region of influence of the leachate plume on the groundwater around a dumpsite at Onitsha expressway, southeastern Nigeria. The borehole log data were acquired and their respective geoposition logged with Garmin GPS device. In addition, four 1D (VES) soundings and 2D electrical profile data were acquired in the field utilizing the Schlumberger and Wenner profiles respectively. Petrozenith PZ-03 Resistivity meter was used to acquire the electrical data, while RES2DINV and WinResist software were used to interpret the 2D and 1D data respectively. The resulting geoelectic layers were correlated with the borehole logs and were interpreted according to their resistivity distribution. Results of the 2D inversion at profiles 1 and 3 showed low resistivity zones indicating influence from the leachate plume. Profiles 2 and 4 gave low resistivity zone within 14.6 and 44.3 Ωm from surface to between 0.375 and 3.60 m depths indicating influence from leachate plume. Likewise, profiles 1 and 3, which penetrated groundwater, also showed very low resistivity with resistivity ranging from 3.12 to 8.7 Ωm, from surface to few meters depths. This indicates that it has been polluted by the leachate. In contrast, Profiles 2 and 4, from the 2D inversion, has no leachate influence on the groundwater. The VES result showed that the depth to the water table at location 1, 2, 3 and 4 are 21.7 m, 17.9 m, 15.9 m and 12.2 m respectively, with the leachate plume flowing in the southeast direction in line with the groundwater flow direction.


2016 ◽  
Vol 33 (3) ◽  
Author(s):  
Eduardo M.S. Amarante ◽  
Olivar A.L. de Lima ◽  
Susana S. Cavalcanti

ABSTRACT. To investigate the subsurface geological and hydrological conditions around the area of the Alagoinhas county cemetery – Bahia State, Brazil, 38 vertical electrical soundings using Schlumberger electrode array were performed to a maximum AB/2 spacing... RESUMO. Para investigar as condições geológicas e hidrológicas da subsuperfície na área do entorno do Cemitério Municipal de Alagoinhas, Bahia, foram realizadas 38 sondagens elétricas verticais centradas em pontos acessíveis da área. As sondagens foram...


2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Sixtus Nwachukwu ◽  
Rasaq Bello ◽  
Ayomide O. Balogun

Abstract An investigation has been made of the groundwater potentials of Orogun Town, Ughelli North Local Government Area of Delta State, Nigeria, using electrical resistivity survey. This study motivated to determine electrical resistivity parameters of the area. The aim of this work is to use electrical resistivity method to explore the groundwater potentials of Orogun Town with the determination of its Dar Zarrouk parameters. A total of eight vertical electrical sounding (VES) were conducted with maximum electrode spacing of 150 m. The data were acquired using ABEM SAS 4000 Terrameter and processed using IPI2win and Interpex softwares. The groundwater potentials of the area are evaluated based on the longitudinal conductance (S), transverse resistance (T), coefficient of electrical anisotropy (λ), resistivity for the formation ($$\rho_{\text{m}}$$ρm), reflection coefficient (RC) and resistivity contrast (FC). The results reveal four subsurface geoelectric layers in seven of the eight VES while one VES revealed three subsurface geoelectric layers. Resistivity values for all the layers in the study area are very high, higher than what is expected in a sedimentary basin as we have in the study area. The resistivity values range from 8470 Ωm (layer 1, VES 7) to 118,030,000 Ωm (layer 3, VES 8). Depth to aquifer in the study area ranged from 1.61 m (VES 2) to 12.41 m (VES 1), while resistivity values of the aquifer ranged from 64,182 Ωm (VES 3) to 118,030,000 Ωm (VES 8). The results from the formation parameters evaluated showed that the area has good groundwater potential but might have been highly contaminated, especially from hydrocarbon sources and other man-made pollutants. The suggested contamination of the aquifer is as a result of the high values of resistivity of the aquifer layers.


2018 ◽  
Vol 64 (3) ◽  
pp. 8-20
Author(s):  
Stephen Oluwafemi Ariyo ◽  
Julius Ogunmola Fatoba ◽  
Olateju O. Bayewu ◽  
Kamaldeen Olakunle Omosanya ◽  
Muhedeen Ajibola Lawal

Abstract Building collapse has been a recurrent environmental hazard in Nigeria in the last two decades. This is a corollary of inadequate foundation investigation prior to construction, poor government policies, and general lack of awareness on the importance of geophysical and geotechnical investigations. In this study, geological mapping and detailed geophysical investigation using Electrical Resistivity Imaging (ERI) and Vertical Electrical Sounding (VES) were carried out to understand the suitability of proposed building sites at the main campus of the Olabisi Onabanjo University (OOU), Ago-Iwoye, Nigeria for construction. Both Wenner array and dipole-dipole were used for profiling and Schlumberger for sounding. Four transverses and VES were used in each of the three areas investigated. Our results show that the subsurface of the study areas is underlain by Precambrian basement rock of Nigeria. Rocks in the study area include banded gneiss, porphyroblastic gneiss, biotite-hornblende granite and quartzite schist. The sounding stations across the three areas and 2D resistivity imaging revealed three principal geoelectric layers, the topsoil, the weathered layer and the fractured/fresh basement with varied resistivity values for each layers. At the VES stations, the three geoelectric layers have resistivity values of 62 to 1182 Ωm, 3.2 to 1360Ωm and 87 to 4680 Ωm. On the 2D resistivity imaging profiles, the resistivity of the three layers varies from 2 to 1182 Ωm, 30to 1360 Ωm, and 40 to 2904 Ωm for the topsoil, the weathered basement, and fractured/fresh bedrock. Our work demonstrates that some of the proposed sites are structurally incompetent for engineering or foundation purposes. Excavation of the topsoil and reinforcement are required to sustain the proposed structures.


2018 ◽  
Vol 19 (1) ◽  
pp. 24-34
Author(s):  
Budy Santoso

Bungaya Kangin Village, Bebandem District, Karangasem Regency, Bali Province consists of paddy fields and settlements, required therefore a water source / aquifer  that can meet all these needs. One of the Geophysical Methods that can identify the aquifer is the Geoelectric Method. Geoelectric method used in this research is Resistivity Method. Data acquisition using Vertical Electrical Sounding (VES) and Electrical Resistivity Tomography (ERT) Methods. VES method is a method of measurement to determine the variation of resistivity vertically at one point. Electrical Resistivity Tomography (ERT) method is a method of measuring resistivity on soil surface / rock by using many electrode (51 electrode), to obtain sub-surface resistivity variation  lateraly and verticaly, to obtain sub-surface image. The equipment used for geoelectric measurements is  Resistivity Meter of Naniura NRD 300 Hf which has been equipped with a switchbox to adjust the displacement of 51 electrodes. Based on the resistivity modeling results, the aquifers in the study area were found in rough sandstones with resistivity values : (49 - 100) Ohm.m.  


2021 ◽  
Author(s):  
Yonatan Garkebo Doyoro ◽  
Chang Ping-Yu ◽  
Jordi Mahardika Puntu

&lt;p&gt;We examined the uncertainty of the resistivity method in cavity studies using a synthetic cavity model set at six-different depths. Conceptual models were simulated to generate synthetic resistivity data for dipole-dipole, pole-dipole, Wenner-Schlumberger, and pole-pole arrays. The 2D geoelectric models were recovered from the inversion of the synthetically measured resistivity data. The highest anomaly effect (1.46) and variance (24400) in resistivity data were recovered by dipole-dipole array, while the pole-pole array obtained the lowest anomaly effect (0.60) and variance (2401) for the target cavity T&lt;sub&gt;1&lt;/sub&gt;. The anomaly effect and variance were linearly associated with the quality of the inverted models. The steeper anomaly gradient of resistivity indicated more distinct cavity boundaries, while the gentler gradient prevents the inference of the cavity boundaries. The recovered model zone above the depth of investigation index of 0.1 has shown relatively higher sensitivity. Modeling for dipole-dipole array provided the highest model resolution and anomaly gradient that shows a relatively distinct geometry of the cavity anomalies. On the contrary, the pole-dipole and Wenner-Schlumberger arrays recovered good model resolutions and moderate anomaly gradient but determining the anomaly geometries is relatively challenging. Whereas, the pole-pole array depicted the lowest model resolution and anomaly gradient with less clear geometry of the cavity anomalies. At deeper depths, the inverted models showed a reduction in model resolutions, overestimation in anomaly sizes, and deviation in anomaly positions, which can create ambiguity in resistivity model interpretations. Despite these uncertainties, our modeling specified that the 2D resistivity imaging is a potential technique to study subsurface cavities.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document