scholarly journals Inhibitory Effect of Phytochemicals from Azadirachta indica A Juss. and Tinospora cordifolia (Thunb.) Miers against SARS-CoV-2 M pro and Spike Protease- An In Silico Analysis

Author(s):  
RAMÀKRISHNAMACHARYA CH ◽  
VANITHA MURALIKUMAR ◽  
CHANDRASEKAR SESHACHALAM

COVID 19 caused by SARS-CoV-2 is spreading worldwide and affected 10 million people with a mortality rate between 0.5 % to 5%. Medicinal plants from China, Morocco, Algeria, Africa and India were tested for antiviral efficacy in SARS-CoV-2. Ayurveda Medicine described many medicinal plants. The Nimba ( Azadirachta indica A. Juss) is used in fever, bacterial and viral infections, and Amrita ( Tinospora cordifolia (Thunb.) Miers) is used as antiviral, antipyretic, and anti-inflammatory purposes. The combination of both these plants is called Nimbamritam, and it is widely used in pyrexia, dermatitis, viral infections, etc. Spike protease (PDB ID 6VXX) and M pro (PDB ID 6LU) were retrieved from RCSB and 16 ligands from A. indica and 6 ligands from T. cordifolia were obtained from IMPPAT and PubChem. AutoDock Vina embedded PyRx was used for docking. Remdesivir was taken as a reference drug. In silico study of Cordifolide A of T cordifolia showed the highest scores with -8.2 Kcal/mol and -10.3Kcal/mol with M pro protease and Spike protease respectively. Cordifolide A had 4 H bonds and Kaempferol had 7 non-conventional bonds, including van der Waal with M pro (6LU7) protease. The interactions with 6VXX had 5 H bonds in each ligand Cordifolide A and Azadirachtin B. The prevention of virus entry by targeting spike protease host receptor ACE2 and restricting replication of the viral genome by targeting M pro residues were identified in our study. A. indica and T. cordifolia are promising therapeutic agents in COVID 19.

2020 ◽  
Author(s):  
RAMAKRISHNAMACHARYA CH ◽  
VANITHA MURALIKUMAR ◽  
CHANDRASEKAR S

Abstract COVID 19 caused by SARS-CoV-2 is spreading worldwide and affected 10 million people with a mortality rate between 0.5 % to 5%. Medicinal plants from China, Morocco, Algeria, Africa and India were tested for antiviral efficacy in SARS-CoV-2. Ayurveda Medicine described many medicinal plants. The Nimba (Azadirachta indica A. Juss) is used in fever, bacterial and viral infections, and Amrita (Tinospora cordifolia (Thunb.) Miers) is used as antiviral, antipyretic, and anti-inflammatory purposes. The combination of both these plants is called Nimbamritam, and it is widely used in pyrexia, dermatitis, viral infections, etc. Spike protease (PDB ID 6VXX) and Mpro (PDB ID 6LU) were retrieved from RCSB and 16 ligands from A. indica and 6 ligands from T. cordifolia were obtained from IMPPAT and PubChem. AutoDock Vina embedded PyRx was used for docking. Remdesivir was taken as a reference drug. In silico study of Cordifolide A of T cordifolia showed the highest scores with -8.2 Kcal/mol and -10.3Kcal/mol with Mpro protease and Spike protease respectively. Cordifolide A had 4 H bonds and Kaempferol had 7 non-conventional bonds, including van der Waal with Mpro (6LU7) protease. The interactions with 6VXX had 5 H bonds in each ligand Cordifolide A and Azadirachtin B. The prevention of virus entry by targeting spike protease host receptor ACE2 and restricting replication of the viral genome by targeting Mpro residues were identified in our study. A. indica and T. cordifolia are promising therapeutic agents in COVID 19.


2019 ◽  
Vol 16 (32) ◽  
pp. 894-898
Author(s):  
D. F. SILVA ◽  
H. D. NETO ◽  
M. D. L. FERREIRA ◽  
A. A. O. FILHO ◽  
E. O. LIMA

β-citronellol (3,7-dimethyl-6-octen-1-ol) has been exhibiting a number of pharmacological effects that creates interest about its antimicrobial potential, since several substances of the monoterpene class have already demonstrated to possess activity in this profile. In addition, the emergence of fungal species resistant to current pharmacotherapy poses a serious challenge to health systems, making it necessary to search for new effective therapeutic alternatives to deal with this problem. In this study, the antimicrobial profile of β-citronellol was analyzed. The Prediction of Activity Spectra for Substances (PASS) online software was used to study the antimicrobial activity of the β-citronellol molecule by the use of in silico analysis. In contrast, an in vitro antifungal study of this monoterpene was carried out. For this purpose, the Minimum Inhibitory Concentration (MIC) was determined by the microdilution technique in 96-well plates in Saboraud Dextrose Broth/RPMI against sensitive strains of Candida albicans, and this assay was performed in duplicate. In the in silico analysis of the antimicrobial profile, it was revealed that the monoterpene β-citronellol had a diverse antimicrobial bioactivity profile. For the antifungal activity, it presented a percentage value with Pa: 58.4% (predominant) and its MIC of 128 μg/mL, which was equivalent for all strains tested. The in silico study of the β-citronellol molecule allowed us to consider that the monoterpenoid is very likely to be bioactive against agents that cause fungal infections.


2018 ◽  
Vol 47 (4) ◽  
pp. 223-229
Author(s):  
Juliana Maria Coutinho BASTOS ◽  
Dimorvan BORDIN ◽  
Andréa Araújo de VASCONCELLOS ◽  
Milton Edson MIRANDA

Abstract Introduction A better tension distribution on implants and abutments in implant-supported fixed partial prosthesis is essential in the rehabilitation of posterior mandible area. Objective: To evaluate the influence of cantilever position and implant connection in a zircônia custom implant-supported fixed partial prosthesis using the 3-D finite element method. Material and method: Four models were made based on tomographic slices of the posterior mandible with a zirconia custom three-fixed screw-retained partial prosthesis. The investigated factors of the in silico study were: cantilever position (mesial or distal) and implant connection (external hexagon or morse taper). 100 N vertical load to premolar and 300 N to molar were used to simulate the occlusal force in each model to evaluate the distribution of stresses in implants, abutments, screws and cortical and cancellous bone. Result: The external hexagon (EH) connection showed higher cortical compression stress when compared to the morse taper (MT). For both connections, the molar cantilever position had the highest cortical compression. The maximum stress peak concentration was located at the cervical bone in contact with the threads of the first implant. The prosthetic and abutment screws associated with the molar cantilevers showed the highest stress concentration, especially with the EH connection. Conclusion: Morse taper implant connetions associated with a mesial cantilever showed a more favorable treatment option for posterior mandible rehabilitation.


2020 ◽  
Vol 9 (12) ◽  
pp. 4020
Author(s):  
Martyna Bednarczyk ◽  
Edyta Fatyga ◽  
Sylwia Dzięgielewska-Gęsiak ◽  
Dariusz Waniczek ◽  
Beniamin Grabarek ◽  
...  

Background: Autophagy plays a dual role of tumor suppression and tumor promotion in colorectal cancer. The study aimed to find those microRNAs (miRNAs) important in BECN1, LAMP2, and PINK1 regulation and to determine the possible role of the epigenetic changes in examined colorectal cancer using an in silico approach. Methods: A total of 44 pairs of surgically removed tumors at clinical stages I‒IV and healthy samples (marginal tissues) from patients’ guts were analyzed. Analysis of the obtained results was conducted using the PL-Grid Infrastructure and Statistica 12.0 program. The miRNAs and CpG islands were estimated using the microrna.org database and MethPrimer program. Results: The autophagy-related genes were shown to be able to be regulated by miRNAs (BECN1—49 mRNA, LAMP2—62 mRNA, PINK1—6 mRNA). It was observed that promotion regions containing at least one CpG region were present in the sequence of each gene. Conclusions: The in silico analysis performed allowed us to determine the possible role of epigenetic mechanisms of regulation gene expression, which may be an interesting therapeutic target in the treatment of colorectal cancer.


Phytomedicine ◽  
2018 ◽  
Vol 39 ◽  
pp. 66-74 ◽  
Author(s):  
Javier E. Ortiz ◽  
Adriana Garro ◽  
Natalia B. Pigni ◽  
María Belén Agüero ◽  
German Roitman ◽  
...  

2020 ◽  
Vol 82 (4) ◽  
Author(s):  
LAXMI MISHRA ◽  
KAVERI TYAGI ◽  
MANISHA KUMARI ◽  
SHRUTI KHANNA ◽  
JUPITA HANDIQUE ◽  
...  

2019 ◽  
Vol 20 (10) ◽  
pp. 2404
Author(s):  
Francisco Reyes-Espinosa ◽  
Domingo Méndez-Álvarez ◽  
Miguel A. Pérez-Rodríguez ◽  
Verónica Herrera-Mayorga ◽  
Alfredo Juárez-Saldivar ◽  
...  

An in silico analysis of the interaction between the complex-ligands of nine acetylcholinesterase (AChE) structures of Lepidopteran organisms and 43 organophosphorus (OPs) pesticides with previous resistance reports was carried out. To predict the potential resistance by structural modifications in Lepidoptera insects, due to proposed point mutations in AChE, a broad analysis was performed using computational tools, such as homology modeling and molecular docking. Two relevant findings were revealed: (1) Docking results give a configuration of the most probable spatial orientation of two interacting molecules (AChE enzyme and OP pesticide) and (2) a predicted ΔGb. The mutations evaluated in the form 1 acetylcholinesterase (AChE-1) and form 2 acetylcholinesterase (AChE-2) structures of enzymes do not affect in any way (there is no regularity of change or significant deviations) the values of the binding energy (ΔGb) recorded in the AChE–OPs complexes. However, the mutations analyzed in AChE are associated with a structural modification that causes an inadequate interaction to complete the phosphorylation of the enzyme.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Bijendra K. Mandar ◽  
Pukar Khanal ◽  
B. M. Patil ◽  
Yadu Nandan Dey ◽  
Ismail Pasha

Sign in / Sign up

Export Citation Format

Share Document