scholarly journals Review of "Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system"

Author(s):  
Michael Efroimsky
Author(s):  
Lorenzo Iorio

We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency νg is much smaller than the particle's orbital one nb. We make neither a priori assumptions about the direction of the wavevector k nor on the orbital configuration of the particle. While the semi-major axis a is left unaffected, the eccentricity e, the inclination I, the longitude of the ascending node Ω, the longitude of pericenter ϖ and the mean anomaly ℳ undergo non-vanishing long-term changes of the form dΨ/dt=F(Kij;e,I,Ω,ω),Ψ=e,I,Ω,ϖ,M, where Kij, i,j=1,2,3 are the coefficients of the tidal matrix K. Thus, in addition to the variations of its orientation in space, the shape of the orbit would be altered as well. Strictly speaking, such effects are not secular trends because of the slow modulation introduced by K and by the orbital elements themselves: they exhibit peculiar long-term temporal patterns which would be potentially of help for their detection in multidecadal analyses of extended data records of planetary observations of various kinds. In particular, they could be useful in performing independent tests of the inflation-driven ultra-low gravitational waves whose imprint may have been indirectly detected in the Cosmic Microwave Background by the Earth-based experiment BICEP2. Our calculation holds, in general, for any gravitationally bound two-body system whose orbital frequency nb is much larger than the frequency νg of the external wave, like, e.g., extrasolar planets and the stars orbiting the Galactic black hole. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.


Author(s):  
Lorenzo Iorio

We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency νg is much smaller than the particle's orbital one nb. We make neither a priori assumptions about the direction of the wavevector k nor on the orbital configuration of the particle. While the semi-major axis a is left unaffected, the eccentricity e, the inclination I, the longitude of the ascending node Ω, the longitude of pericenter ϖ and the mean anomaly ℳ undergo non-vanishing long-term changes of the form dΨ/dt=F(Kij;e,I,Ω,ω),Ψ=e,I,Ω,ϖ,M, where Kij, i,j=1,2,3 are the coefficients of the tidal matrix K. Thus, in addition to the variations of its orientation in space, the shape of the orbit would be altered as well. Strictly speaking, such effects are not secular trends because of the slow modulation introduced by K and by the orbital elements themselves: they exhibit peculiar long-term temporal patterns which would be potentially of help for their detection in multidecadal analyses of extended data records of planetary observations of various kinds. In particular, they could be useful in performing independent tests of the inflation-driven ultra-low gravitational waves whose imprint may have been indirectly detected in the Cosmic Microwave Background by the Earth-based experiment BICEP2. Our calculation holds, in general, for any gravitationally bound two-body system whose orbital frequency nb is much larger than the frequency νg of the external wave, like, e.g., extrasolar planets and the stars orbiting the Galactic black hole. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.


Author(s):  
Shaowu Ou ◽  
Shixiao Fu ◽  
Wei Wei ◽  
Tao Peng ◽  
Xuefeng Wang

Typically, in some side-by-side offshore operations, the speed of vessels is very low or even 0 and the headings are manually maneuvered. In this paper, the hydrodynamic responses of a two-body system in such operations under irregular seas are investigated. The numerical model includes two identical PSVs (Platform Supply Vessel) as well as the fenders and connection lines between them. A horizontal mooring system constraining the low frequency motions is set on one of the ships to simulate maneuver system. Accounting for the hydrodynamic interactions between two bodies, 3D potential theory is applied for the analysis of their hydrodynamic coefficients. With wind and current effects included, these coefficients are further applied in the time domain simulations in irregular waves. The relevant coefficients are estimated by experiential formulas. Time-varying loads on fenders and connection lines are analyzed. Meanwhile, the relative motions as well as the effects of the hydrodynamic interactions between ships are further discussed, and finally an optimal operation scheme in which operation can be safely performed is summarized.


2016 ◽  
Vol 93 (2) ◽  
Author(s):  
W. Chaibi ◽  
R. Geiger ◽  
B. Canuel ◽  
A. Bertoldi ◽  
A. Landragin ◽  
...  

1988 ◽  
Vol 132 (5) ◽  
pp. 237-240 ◽  
Author(s):  
R. Del Fabbro ◽  
A. Di Virgilio ◽  
A. Giazotto ◽  
H. Kautzky ◽  
V. Montelatici ◽  
...  

2019 ◽  
Vol 29 (04) ◽  
pp. 1940003 ◽  
Author(s):  
Tomofumi Shimoda ◽  
Satoru Takano ◽  
Ching Pin Ooi ◽  
Naoki Aritomi ◽  
Yuta Michimura ◽  
...  

Expanding the observational frequency of gravitational waves is important for the future of astronomy. Torsion-Bar Antenna (TOBA) is a mid-frequency and low-frequency gravitational wave detector using a torsion pendulum. The low resonant frequency of the rotational mode of the torsion pendulum enables ground-based observations. The overview of TOBA, including the past and present status of the prototype development, is summarized in this paper.


Author(s):  
Marek Lewicki ◽  
Ville Vaskonen

AbstractWe study gravitational wave (GW) production in strongly supercooled cosmological phase transitions, taking particular care of models featuring a complex scalar field with a U(1) symmetric potential. We perform lattice simulations of two-bubble collisions to properly model the scalar field gradients, and compute the GW spectrum sourced by them using the thin-wall approximation in many-bubble simulations. We find that in the U(1) symmetric case the low-frequency spectrum is $$\propto \omega $$ ∝ ω whereas for a real scalar field it is $$\propto \omega ^3$$ ∝ ω 3 . In both cases the spectrum decays as $$\omega ^{-2}$$ ω - 2 at high frequencies.


Sign in / Sign up

Export Citation Format

Share Document