Numerical Study on Hydrodynamic Responses of a Two-Body System in Side-by-Side Operation

Author(s):  
Shaowu Ou ◽  
Shixiao Fu ◽  
Wei Wei ◽  
Tao Peng ◽  
Xuefeng Wang

Typically, in some side-by-side offshore operations, the speed of vessels is very low or even 0 and the headings are manually maneuvered. In this paper, the hydrodynamic responses of a two-body system in such operations under irregular seas are investigated. The numerical model includes two identical PSVs (Platform Supply Vessel) as well as the fenders and connection lines between them. A horizontal mooring system constraining the low frequency motions is set on one of the ships to simulate maneuver system. Accounting for the hydrodynamic interactions between two bodies, 3D potential theory is applied for the analysis of their hydrodynamic coefficients. With wind and current effects included, these coefficients are further applied in the time domain simulations in irregular waves. The relevant coefficients are estimated by experiential formulas. Time-varying loads on fenders and connection lines are analyzed. Meanwhile, the relative motions as well as the effects of the hydrodynamic interactions between ships are further discussed, and finally an optimal operation scheme in which operation can be safely performed is summarized.

Author(s):  
Hung-Jie Tang ◽  
Ray-Yeng Yang ◽  
Chai-Cheng Huang

Abstract This study aims to investigate the performance changes resulted from a mooring line failure of a marine fish cage exposed to irregular waves and current. A numerical model based on the lumped mass method and Morison equation was extended to simulate the mooring line failure scenario. In this study, the failed resulting changes were compared with its normal counterpart in both the time domain and the frequency domain. After one upstream anchor loss, the maximum tension on the remaining anchor has increased significantly, as well as the drift distance of the rearing part (net chamber, floating collar, and tube-sinker) of the fish cage. The resulting changes can also be seen in both the wave-frequency and the low-frequency region in the spectra, including mooring tensions and body motions.


2020 ◽  
Vol 216 ◽  
pp. 108110
Author(s):  
Hung-Jie Tang ◽  
Po-Hung Yeh ◽  
Chai-Cheng Huang ◽  
Ray-Yeng Yang

1996 ◽  
Vol 40 (03) ◽  
pp. 200-210 ◽  
Author(s):  
Tore Ulstein ◽  
Odd M. Faltinsen

An analytical and numerical study of two-dimensional unsteady planing of a flat plate is presented. The immersion of the plate is assumed small; hence, the spray at the leading edge is represented by a square root singularity. The analogy to airfoil theory is used and the hydrodynamic problem is solved in the time domain. The time-varying wetted-length change due to the water flow is accounted for by a generalized Wagner approach. The present theory is verified by comparison with an analytical solution by Sedov (1940) for water entry of a planing plate and with the linear frequency domain solution by Bessho & Komatsu (1984) for a heaving planing plate.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Joachim Feldmann

This work examines the dynamic behavior of a system consisting of a mass-block on the rough surface of a simply supported plate, harmonically excited in the tangential direction. The vertical excitation emerges from roughness, tracked by the mass-block. Low-frequency sliding results in high-frequency vertical excitation up to the ultrasonic range. The conditions of the elastic contact between the two bodies are modeled in the form of vertical contact stiffness. A specific friction law with a behavior similar to an elastically coupled coulomb damper represents the tangential direction. The model allows for the study of the interaction between the tangential friction behavior and the vertical roughness-induced vibrations. Parameters of interest are friction velocity, mass-block weight, surface roughness, and contact material. Because of nonlinearities, the theoretical model must be solved within the time domain. The theoretical results are verified through experimental results of a corresponding setup. The subject combines material science, contact mechanics, and structural dynamics.


Author(s):  
Yihua Su ◽  
Jianmin Yang ◽  
Longfei Xiao ◽  
Gang Chen

Modeling the deepwater mooring system in present available basin using standard Froude scaling at an acceptable scale presents new challenges. A prospective method is to truncate the full-depth mooring lines and find an equivalent truncated mooring system that can reproduce both static and dynamic response of the full-depth mooring system, but large truncation arise if the water depth where the deepwater platform located is very deep or the available water depth of the basin is shallow. A Cell-Truss Spar operated in 1500m water depth is calibrated in a wave basin with 4m water depth. Large truncation arises even though a small model scale 1:100 is chosen. A series of truncated mooring lines are designed and investigated through numerical simulations, single line model tests and coupled wave basin model tests. It is found that dynamic response of the truncated mooring line can be enlarged by using larger diameter and mass per unit length in air. Although the truncated mooring line with clump presents a “taut” shape, its dynamic characteristics is dominated by the geometry stiffness and it underestimates dynamic response of the full-depth mooring line, even induces high-frequency dynamic response. There are still two obstacles in realizing dynamic similarity for the largely truncated mooring system: lower mean value of the top tension of upstream mooring lines, and smaller low-frequency mooring-induced damping.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Dalian Yang ◽  
Liman Chen ◽  
Lingli Jiang ◽  
Ping Wang ◽  
Jie Tao

Due to heavy and alternating loads of working conditions, spiral bevel gears are prone to broken tooth failures. To solve the problem of vibration characteristic of spiral bevel geared transmission with broken tooth failures that is unknown, this study, considering time-varying mesh stiffness and friction excitation, proposed a torsional vibration dynamic model of spiral bevel geared transmission, which has more simple transmission path and the smaller signal attenuation. First, the time-varying excitations of various broken tooth failure are calculated and introduced into the torsional vibration dynamic model. The vibration response of spiral bevel geared transmission with various broken tooth failures is analysed in the time-frequency domain. Then, the sensitivity of the time-domain statistical index and the frequency domain components to different broken tooth failures are studied. Finally, the correctness of the simulation is verified by experiment. The results show that the crest factor is sensitive to minor tooth failure (10–30%), while kurtosis is sensitive to severe failure (30–60%). With the increase of degrees of broken tooth failure, the energy of the low-frequency band increases obviously.


2020 ◽  
Vol 10 (11) ◽  
pp. 3799
Author(s):  
Fan Zhang ◽  
Di Liu ◽  
Aibing Liu ◽  
Xianyue Gang ◽  
Lijun Li

The low frequency phase characteristics of microphones in a monitoring system are crucial for characterizing large-scale natural and artificial activities—e.g., earthquakes, nuclear explosions, or rocket launchings. At present, microphones are simultaneously calibrated using in-situ or calibrator methods to get their phase consistency. However, the essential primary calibration, which traces their phase sensitivity to basic physical quantities, is grossly overlooked. Recently, we speculated that the microphone phase sensitivity is acoustically controlled by the pressure leakage and heat conduction effects in its back chamber, which will vary at low frequencies. Therefore, by means of the FEA (Finite Element Analysis) technique, simulations of laser pistonphone-based primary microphone calibrations are conducted both in the frequency and time domains. The frequency domain simulation quantifies the phase variation, while the time domain analysis helps us to understand the variation mechanism. It is found that the low frequency phase sensitivity is greatly influenced by its geometries and the venting state and should be pre-calibrated before serving.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1522
Author(s):  
Jeong-Seok Kim ◽  
Kyong-Hwan Kim ◽  
Jiyong Park ◽  
Sewan Park ◽  
Seung Ho Shin

A numerical study was performed to investigate the applicability of the linear decomposition method for the hydrodynamic energy conversion of an oscillating-water-column type wave energy converter (OWC-WEC). Hydrodynamic problems of the OWC chamber were decomposed into the excitation and radiation problems with the time-domain numerical method based on the linear potential theory. A finite element method was applied to solve the potential flow in the entire fluid domain including OWC chamber structure. The validity of the linear decomposition method was examined by comparing with the direct interaction method for the turbine–chamber interaction based on the linear pressure drop characteristics. In order to estimate the hydrodynamic energy conversion performance under the irregular waves, the response spectrum method was applied with the transfer function based on the linear decomposition method. Under the various irregular wave conditions, the pneumatic power of OWC-WEC calculated by the response spectrum based on the linear decomposition method agreed well with the direct irregular wave simulation results.


1975 ◽  
Vol 15 (06) ◽  
pp. 487-494 ◽  
Author(s):  
J.A. Pinkster

Abstract The influence of the low-frequency-wave-drifting force on the motions of moored vessels and the loads in the mooring system is demonstrated from results of model tests in irregular waves. The origin of the wave drifting force is discussed and methods for calculating the mean drifting force are reviewed. To facilitate calculation of the low-frequency-wave drifting force on an object in irregular waves, an existing method using the mean drifting force in regular waves is generalized. The results of calculations using the method introduced in this paper are compared with previously published test results. Finally, some remarks are added concerning effects that have not been accounted for in existing calculation methods. Introduction A vessel moored at sea in stationary conditions with regard to waves, wind, and current is subjected to forces that tend to shift it from the desired position. For a given vessel and position in the position. For a given vessel and position in the horizontal plane, the motions depend on both the mooring system and the external forces acting on the vessel. In steady conditions, the forces caused by a constant wind and current are constant quantities for a given heading angle of the vessel. The forces caused by a stationary irregular sea are of an irregular nature and may be split into two parts: first-order oscillatory forces with wave parts: first-order oscillatory forces with wave frequency, and second-order, slowly varying forces with frequencies much lower than the wave frequency.The first-order oscillatory wave forces on a vessel cause the well known ship motions whose frequencies equal the frequencies present in the spectrum of the irregular waves. These are the linear motions of surge, sway, and heave and the three angular motions of roll, pitch, and yaw. In general, the first-order wave forces are proportional to the wave height, as are the ensuing motions. The magnitude of the linear oscillatory motions is in the order of the height of the waves.The second-order wave forces, perhaps better known as the wave drifting forces, have been shown to be proportional to the square of the wave height. These forces, though small in magnitude, are the cause of the low-frequency, large-amplitude, horizontal motions sometimes observed in large vessels moored in irregular waves. Tests run in irregular waves in wave tanks of the Netherlands Ship Model Basin revealed a number of properties and effects of the low-frequency-wave properties and effects of the low-frequency-wave drifting force that are discussed here using the results of two test programs.The first of these programs concerns tests run with the model of a 125,000-cu m LNG carrier moored in head seas with an ideal linear mooring system. The second program deals with a 300,000-DWT VLCC moored with a realistic nonlinear bow hawser to a single-buoy mooring in waves, wind, and current coming from different directions.The results of the tests with the LNG carrier are shown in Figs. 1 through 3, while the results of the tests with the 300,000-DWT VLCC are shown in Fig. 4. All results are given in full-scale values. Fig. 1 shows the wave trace and the surge motion of the LNG carrier to a base of time. SPEJ P. 487


1998 ◽  
Vol 77 (2) ◽  
pp. 473-484 ◽  
Author(s):  
M. Sampoli, P. Benassi, R. Dell'Anna,

Sign in / Sign up

Export Citation Format

Share Document