scholarly journals Influence of electrical conductivity on water uptake and vase life of cut gladiolus stems

2015 ◽  
Vol 21 (2) ◽  
pp. 221
Author(s):  
Lucas Cavalcante Da Costa ◽  
Fernanda Ferreira De Araújo ◽  
Teresa Drummond Correia Mendes ◽  
Fernando Luiz Finger

<p>Several experiments reveal that distilled water varies among different laboratories and also does not have a standard composition. Water electrical conductivity (EC) of vase solution is one of the parameters that influence the water uptake by cut flowers. Therefore, the objective of this work was to evaluate the influence of electrical conductivity on water uptake and vase life in cut stems of gladiolus. The stems harvested and kept in distilled water (pH 6.6, EC &lt;0.01dS m-1) and tap water (pH 7.0, EC 0.75 dS m-1) at room temperature. Flowers kept in tap water showed lower fresh weight loss after the second day and higher water uptake during vase life. In a second set of experiments, we verified the limit EC saturation supported by the flower. For this, flowers were placed in individual test tubes containing four different solutions with varying ion concentrations. Solution 2 (EC 0.60 dS m-1) promoted increased vase life and allowed maximum water uptake by the flowers. The results show that the electrical conductivity of vase solution is a major parameter in experiments with vase life of cut gladiolus. The presence of ions in the vase solution increases the overall vase life and improves water uptake of flowers with favorable optimal EC between 0.60 to 0.87 dS m-1.</p>

2018 ◽  
Vol 35 (1) ◽  
pp. 183-190
Author(s):  
G. Chaudhary ◽  
A. Khanal

Keeping quality is an important parameter for evaluation of rose cut flower quality, both in export and domestic markets as fresh cut rose flowers are highly perishable due to limited water uptake and low available energy. Carbohydrate is the main food source to maintain the energy requirement for flowers .An experiment was conducted at Horticulture Laboratory of Institute of Agriculture and Animal Science, Lamjung, Nepal on January 2017 in order to find out best concentration of sucrose that enhances and prolongs the better flower quality and longevity. Experiment was laid out with 10 treatments viz. tap water, tap water + 2% sucrose, tap water + 4% sucrose, tap water + 6% sucrose, tap water + 8% sucrose, distilled water, distilled water + 2% sucrose, distilled water + 4% sucrose, distilled water + 6% sucrose and distilled water + 8% sucrose under completely randomized design with three replications. Rose sticks were harvested at flower bud stage and two sticks were kept in each vase solution. Effect of different concentrations of sucrose solution on water uptake, weight gain or loss, neck bending, flower diameter, days to full bloom and vase life was affected significantly. The rose flower held in distilled water + 6% Sucrose was recorded to have higher value (7.77cm) for flower diameter at 10 days followed by Tap water + 6% Sucrose with value 7.62cm. Similarly, lower flower diameter (2.29cm) was observed in Tap water at Day16 followed by Distilled water with value 3.21cm. Similar pattern was observed in all other parameters having highest vase life (19.5 days) in Distilled water + 6% Sucrose and lowest (15.17 days) in tap water only. Among different concentrations of sucrose solution, distilled water + 6% sucrose was found highly effective for longevity of cultivar.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 382
Author(s):  
Hyun Kyung Kim ◽  
Ae Kyung Lee

This study compared and analyzed the qualities of cut Phalaenopsis “V3” flowers based on the place of origin and season. An investigation of the senescence type showed that flowers originating from Korea had a higher rate of aging than those from China across all three seasons. Consequently, the vase life was also 3–5 days longer for Chinese flowers than those for Korean flowers, regardless of the season. Furthermore, the vase life was the longest in autumn, followed by spring and summer, with statistically significant differences. With respect to flower diameter, Chinese cut phalaenopsis flowers were relatively larger than the Korean ones on day 1 of the experiment. As the senescence process of wilting was initiated earlier in Korean flowers with a shorter vase life, they showed higher reductions in flower diameters as well. The fresh weight, water uptake, and water balance were lower for Korean flowers than those for Chinese flowers starting on day 5 of the experiment across all three seasons. Korean cut phalaenopsis flowers experienced difficulties in maintaining water levels following their water uptake on day 1, which may have affected their vase life. Ethylene production showed a sharp increase on day 7 in Chinese cut flowers and day 5 in Korean cut flowers, with high amounts typically observed in spring, which coincided with the results of water loss. Hunter values L, a, and b and changes petal color ⊿E significantly differed not by place of origin but by season. Additionally, the sugar content of the solution inside the water tubes used when selling cut phalaenopsis flowers was investigated. Chinese flowers are subjected to pretreatment and posttreatment inside the water tube before being exported, while Korean flowers are treated with tap water. The Chinese flowers contained approximately seven times more sugar content compared to Korean flowers. This suggests that the treatment solution components, including sugar and other ingredients, of the Chinese cut flowers had a positive effect on water uptake and lowered the sensitivity to ethylene, which seemed to have an effect on the long vase life and quality. If Korean cut flowers are also distributed using a treatment agent, it is expected that the vase life will be improved and the satisfaction of consumers will be increased. However, since there are several possibilities that can affect post-harvest quality, it seems that additional experiments are needed. Moreover, as flower quality decreases in summer compared to those in spring or autumn, it will be necessary to reduce the differences in quality between seasons.


Genetika ◽  
2018 ◽  
Vol 50 (2) ◽  
pp. 495-502
Author(s):  
Emina Mladenovic ◽  
Jelena Cukanovic ◽  
Biljana Bozanic-Tanjga ◽  
Lazar Pavlovic ◽  
Ksenija Hiel ◽  
...  

Efficacy of preservative solutions on vase life of garden roses has not been researched before. Vast variability and morphological characteristics of this group of roses are very important, making them suitable for their use in bouquets, arrangements and vases. This research was carried out to examine the influence of five preservative solutions on vase life of garden rose cut flowers. The aim of research was to determine best preservative solution for prolonging of vase life of garden rose cut flower. The experiment included 8 rose cultivars cultivated for garden use. Each treatment consisted of 10 cut garden roses. The cut garden rose flowers with vase solution containing Al2(SO4)3+ethanol+sucrose register longer vase life and higher values in water uptake. Vase life of flowers held in tap water (control) was lowest (4.38 days). This research backs the assumption that with the use of preservative solutions, garden rose also can be used as a cut flower.


HortScience ◽  
1994 ◽  
Vol 29 (7) ◽  
pp. 736d-736
Author(s):  
Lane Greer ◽  
A. E. Einert

The frequency of purchase of cut flowers is influenced by the vase life of the stems in the consumer's home. We are attempting to find a preservative solution made of common household products to extend the vase life of cut roses. We conducted a survey of local garden club members to find what recipes they use. We compared several home recipes against three commercial preservatives and tap water. Two treatments were better than plain tap water: 1) a mixture of 1 teaspoon of vinegar, 1 aspirin tablet (325 mg), and 1 tablespoon sugar in 700 ml of water; and 2) a mixture of 1 teaspoon vinegar, 1 tablespoon sugar and 1/2 tablespoon bleach in 700 ml of water. These treatments yielded a vase life of 9 and 8.3 days, respectively, as compared to 2.3 days for water. These treatments also proved clearly better than the three commercial preservatives tested. Changing plain water daily did not appreciably extend vase life over allowing water to remain for the entire life of the following stem. We found no relationship between water uptake and vase life; however, solution pH below 5.0 was necessary for extended vase life.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Agata Jedrzejuk ◽  
Julia Rochala ◽  
Jacek Zakrzewski ◽  
Julita Rabiza-Świder

During the vase life of cut stems obstruction of xylem vessels occurs due to microbial growth, formation of tyloses, deposition of materials in the lumen of xylem vessels and the presence of air emboli in the vascular system. Such obstructions may restrict water uptake and its transport towards upwards thus lowering their ornamental value and longevity of cut flowers.Clematisis a very attractive plant material which may be used as cut flower in floral compositions. Nothing is known about the histochemical or cytological nature of xylem blockages occurring in cut stems of this plant. This study shows that inclematis, tyloses are the main source of occlusions, although bacteria and some amorphic substances may also appear inside the vessels. A preservative composed of 200 mg dm−38-HQC (8-hydroxyquinolin citrate) and 2% sucrose arrested bacterial development and the growth of tyloses. This information can be helpful in the development of new treatments to improve keeping qualities of cutclematisstems.


2008 ◽  
Vol 14 (4) ◽  
Author(s):  
O. Terék ◽  
F. A. S. Hassan ◽  
E. Jámbor-Benczúr ◽  
Á. Máthé

Cut flowers of Dianthus caryophyllus L. cv. GIOKO were treated with different concentrations of sucrose and in combination with 1­methylcyclopropene (1-MCP) to compare the effect of these treatments with floral preservative (`Spring') on the longevity of flowers. Distilled water was used for preparing all solutions. The control flowers were held in distilled water. Clorox at 2 mL- I was added to all treatments containing sucrose and it was also applied as a separate treatment. The vase life of cut carnations was significantly prolonged due to the use of chemical treatments, as compared to the untreated control. The longest vase life (18.33 days) was obtained by using 1-MCP 0.5 g m-3 for 6 h treatment. All concentrations of sucrose had a positive effect on flower diameter. The best treatment in this respect was 1 -MCP with 30 gL-I sucrose. 1-MCP treatment significantly increased the chlorophyll content, as compared to the control or the "Spring" treatment. The highest values in this respect were obtained by 1 -MCP treatment alone or with the lowest level of sucrose. The effect of these treatments on the pH of solutions is discussed.


2002 ◽  
Vol 42 (5) ◽  
pp. 637
Author(s):  
K.-L. Huang ◽  
L.-J. Liao ◽  
R.-S. Shen ◽  
W.-S. Chen ◽  
Y.-H. Lin

Continuous postharvest treatment of cut rose flowers (Rosa hybrida L. cv. Diana) with maleic acid hydrazide (1.2-dihydro-3,6-pyridazinedione, MH) at 560.5 8-hydroxyquinoline sulfate (HQS) at 388.4 HQS, MH + HQS or sucrose + HQS treatments. The longevity of flowers in MH + sucrose in combination with HQS was extended for 18 days after vase treatments, whereas the longevity of cut flowers was only 4, 6 and 8 days for HQS, MH + HQS and sucrose + HQS, respectively. Cut roses treated with MH + sucrose + HQS in vase solution exhibited greater water uptake and less water loss than those in HQS. The concentrations of various sugars in petals were highest in the sucrose + HQS treatment, and MH + sucrose + HQS > MH + HQS > HQS. Ethylene production was significantly lower in sucrose + HQS or MH + sucrose + HQS treatments in comparison to MH + HQS, or HQS.


HortScience ◽  
2011 ◽  
Vol 46 (3) ◽  
pp. 509-512 ◽  
Author(s):  
Peitao Lü ◽  
Xinmin Huang ◽  
Hongmei Li ◽  
Jiping Liu ◽  
Shenggen He ◽  
...  

In studying the postharvest water relations of cut flowers, researchers aim to determine rates of water uptake and water loss along with changes in fresh weight. An automatic apparatus was devised for continuous monitoring of these indices. The novel apparatus consists of two balances automatically recording mass at a relatively high data acquisition rate (min−1), a personal computer, two containers, and plastic tubing. The apparatus is accurate, labor-saving, and real-time. It enabled dynamic synchronous recording of water uptake as well as fresh weight of the cut flower stem, from which precise water uptake loss rates during vase life can be accurately determined. Rates of water uptake and water loss of individual cut rose (Rosa hybrida cv. Movie Star) stems were measured using the apparatus under alternating 12-h light and dark periods. Both water uptake and water loss rates fluctuated with the light to dark shift over 120 h of observation. Stem fresh weight increased rapidly over the first 40 h of vase period and decreased gradually thereafter. Cut lily (Lilium hybrida cv. Yellow Overlord) stems showed similar trends in water uptake and water loss rate to cut rose stems. The accuracy and sensitivity of the new apparatus was validated by comparison with manual weighing using a balance at 2-h intervals under alternating 12-h light and dark periods over 108 h. The apparatus described here constitutes a suitable method for direct measurement of water uptake and fresh weight, including capturing relatively rapid water balance responses to changes in the postharvest environment.


Sign in / Sign up

Export Citation Format

Share Document