scholarly journals Cosmology with Gamma-Ray Bursts Using k-correction

10.14311/1324 ◽  
2011 ◽  
Vol 51 (1) ◽  
Author(s):  
A. Kovács ◽  
Z. Bagoly ◽  
L. G. Balázs ◽  
I. Horváth ◽  
P. Veres

In the case of Gamma Ray Bursts with measured redshift, we can calculate the k-correction to get the fluence and energy that were actually produced in the comoving system of the GRB. To achieve this we have to use well-fitted parameters of GRB spectrum, available in the GCN database. The output of the calculations is the comoving isotropic energy Eiso, but this is not the endpoint: this data can be useful forestimating the ΩM parameter of the Universe and for making a GRB Hubble diagram usig Amati’s relation.

2021 ◽  
Vol 21 (10) ◽  
pp. 254
Author(s):  
Zhi-Ying Liu ◽  
Fu-Wen Zhang ◽  
Si-Yuan Zhu

Abstract Gamma-ray bursts (GRBs) are brief, intense, gamma-ray flashes in the universe, lasting from a few milliseconds to a few thousand seconds. For short gamma-ray bursts (sGRBs) with duration less than 2 seconds, the isotropic energy (E iso) function may be more scientifically meaningful and accurately measured than the luminosity (L p) function. In this work we construct, for the first time, the isotropic energy function of sGRBs and estimate their formation rate. First, we derive the L p – E p correlation using 22 sGRBs with known redshifts and well-measured spectra and estimate the pseduo redshifts of 334 Fermi sGRBs. Then, we adopt the Lynden-Bell c − method to study isotropic energy functions and formation rate of sGRBs without any assumption. A strong evolution of isotropic energy E iso ∝ (1+z)5.79 is found, which is comparable to that between L p and z. After removing effect of the cosmic evolution, the isotropic energy function can be reasonably fitted by a broken power law, which is ϕ ( E iso , 0 ) ∝ E iso , 0 − 0.45 for dim sGRBs and ϕ ( E iso , 0 ) ∝ E iso , 0 − 1.11 for bright sGRBs, with the break energy 4.92 × 1049 erg. We obtain the local formation rate of sGRBs is about 17.43 events Gpc−3 yr−1. If assuming a beaming angle is 6° to 26°, the local formation rate including off-axis sGRBs is estimated as ρ 0,all = 155.79 – 3202.35 events Gpc−3 yr−1.


1998 ◽  
Vol 294 (1) ◽  
pp. L13-L17 ◽  
Author(s):  
R. A. M. J. Wijers ◽  
J. S. Bloom ◽  
J. S. Bagla ◽  
P. Natarajan

Author(s):  
Joshua S. Bloom

This chapter focuses on how gamma-ray bursts (GRBs) are emerging as unique tools in the study of broad areas of astronomy and physics by virtue of their special properties. The unassailable fact about GRBs that makes them such great probes is that they are fantastically bright and so can be seen to the farthest reaches of the observable Universe. In parallel with the ongoing study of GRB events and progenitors, new lines of inquiry have burgeoned: using GRBs as unique probes of the Universe in ways that are almost completely divorced from the nature of GRBs themselves. Topics discussed include studies of gas, dust, and galaxies; the history of star formation; measuring reionization and the first objects in the universe; neutrinos, gravitational waves, and cosmic rays; quantum gravity and the expansion of the universe; and the future of GRBs.


2003 ◽  
Vol 591 (2) ◽  
pp. L91-L94 ◽  
Author(s):  
P. Mszros ◽  
M. J. Rees

1999 ◽  
Vol 08 (04) ◽  
pp. 507-517 ◽  
Author(s):  
DEEPAK JAIN ◽  
N. PANCHAPAKESAN ◽  
S. MAHAJAN ◽  
V. B. BHATIA

Identification of gravitationally lensed Gamma Ray Bursts (GRBs) in the BATSE 4B catalog can be used to constrain the average redshift <z> of the GRBs. In this paper we investigate the effect of evolving lenses on the <z> of GRBs in different cosmological models of the universe. The cosmological parameters Ω and Λ have an effect on the <z> of GRBs. The other factor which can change the <z> is the evolution of galaxies. We consider three evolutionary model of galaxies. In particular, we find that the upper limit on <z> of GRBs is higher in evolving model of galaxies as compared to non-evolving models of galaxies.


Sign in / Sign up

Export Citation Format

Share Document