scholarly journals Method to Control Multiple Segmented LLSM without Position Encoder

2020 ◽  
Vol 5 (2) ◽  
pp. 28-35
Author(s):  
Andreas R. Weber ◽  
Gerald Steiner

<span lang="EN-GB">In recent years long stator linear synchronous motors (LLSM) started to replace the typical rotating to linear converters like belts, chains, screw systems, pulleys, disks and so on. With LLSM a lot of drawbacks in the machine concepts and design can be prevented. For long tracks, reducing reactive power and individual control of numerous moveable units, the track is segmented in several fed stator units. Because of the LLSM construction an operation with a physical position encoder is not desirable. For that reason position observers should be used instead. In this paper a method to control the multiple segmented LLSM without position encoder is proposed. The special behaviour during entrance and exit of one moveable unit in an active stator segment is described and the control concept via a master slave relationship is proposed. Experimental results are presented to demonstrate the performance and feasibility of the proposed method.</span>

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3549
Author(s):  
Pham Quoc Khanh ◽  
Viet-Anh Truong ◽  
Ho Pham Huy Anh

The paper proposes a new speed control method to improve control quality and expand the Permanent Magnet Synchronous Motors speed range. The Permanent Magnet Synchronous Motors (PMSM) speed range enlarging is based on the newly proposed power control principle between two voltage sources instead of winding current control as the conventional Field Oriented Control method. The power management between the inverter and PMSM motor allows the Flux-Weakening obstacle to be overcome entirely, leading to a significant extension of the motor speed to a constant power range. Based on motor power control, a new control method is proposed and allows for efficiently reducing current and torque ripple caused by the imbalance between the power supply of the inverter and the power required through the desired stator current. The proposed method permits for not only an enhanced PMSM speed range, but also a robust stability in PMSM speed control. The simulation results have demonstrated the efficiency and stability of the proposed control method.


2017 ◽  
Vol 11 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Juncai Song ◽  
Fei Dong ◽  
Jiwen Zhao ◽  
Siliang Lu ◽  
Shaokun Dou ◽  
...  

2014 ◽  
Vol 27 (11) ◽  
pp. 115016 ◽  
Author(s):  
Jun Zheng ◽  
Yunhua Shi ◽  
Dabo He ◽  
Hailian Jing ◽  
Jing Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document