Ternary PC/ABS/PMMA blends — morphology and mechanical properties under quasi-static loading conditions

Polimery ◽  
2012 ◽  
Vol 57 (2) ◽  
pp. 87-94 ◽  
Author(s):  
JAN RYBNICEK ◽  
RALF LACH ◽  
WOLFGANG GRELLMANN ◽  
MONIKA LAPCIKOVA ◽  
MIROSLAV SLOUF ◽  
...  
2018 ◽  
Vol 38 (7) ◽  
pp. 617-623
Author(s):  
Jin Ding ◽  
Zhenming Yue ◽  
Jiao Sun ◽  
Jun Gao

Abstract This work analyzed the effects of nano-silicon dioxide (nano-SiO2) fillers on the morphology and mechanical properties of acrylonitrile-butadiene-styrene (ABS)/poly(methyl methacrylate) (PMMA) blends. Nano-SiO2 particles were selectively dispersed in the PMMA phase, and the toughness of the ternary blends was significantly improved when the contents of the nano-SiO2 fillers were below 2 wt%. The stearic acid treatment of nano-SiO2 particles prevented the adhesion between constituents and markedly diminished the toughness of the blends. Nano-SiO2 particles were alternatively treated with a silane coupling agent to promote adhesion. The toughness was better in blends for filler contents below 2 wt% than in pure nano-SiO2 particles. However, the presence of nano-SiO2 fillers decreased the surface glossiness of the blends. This work provides new insights into the processes by which nanomaterials toughen ABS/PMMA blends.


Author(s):  
Gyeung Ho Kim ◽  
Mehmet Sarikaya ◽  
D. L. Milius ◽  
I. A. Aksay

Cermets are designed to optimize the mechanical properties of ceramics (hard and strong component) and metals (ductile and tough component) into one system. However, the processing of such systems is a problem in obtaining fully dense composite without deleterious reaction products. In the lightweight (2.65 g/cc) B4C-Al cermet, many of the processing problems have been circumvented. It is now possible to process fully dense B4C-Al cermet with tailored microstructures and achieve unique combination of mechanical properties (fracture strength of over 600 MPa and fracture toughness of 12 MPa-m1/2). In this paper, microstructure and fractography of B4C-Al cermets, tested under dynamic and static loading conditions, are described.The cermet is prepared by infiltration of Al at 1150°C into partially sintered B4C compact under vacuum to full density. Fracture surface replicas were prepared by using cellulose acetate and thin-film carbon deposition. Samples were observed with a Philips 3000 at 100 kV.


Sign in / Sign up

Export Citation Format

Share Document