scholarly journals Tectono-stratigraphic correlations between Northern Evvoia, Skopelos and Alonnisos, and the postulated collision of the Pelagonian carbonate platform with the Paikon forearc basin (Pelagonian-Vardar zones, Internal Hellenides)

Author(s):  
Rudolph Scherreiks ◽  
Marcelle Boudagher-Fadel ◽  
Marcelle Boudagher-Fadel ◽  
Marcelle Boudagher-Fadel

The Pelagonian stratigraphy of the study area consists of a Permo-Triassic basement and an Upper Triassic and Jurassic carbonate platform formation that had been overthrust by the Eohellenic ophiolite sheet during the Early Cretaceous. Intensive erosion, during the Cretaceous, removed most of the ophiolite and partly the Jurassic formation. It is hypothesised that uplift and erosion of eastern Pelagonia had been triggered by the break-off of the subducted oceanic leading edge of the Pelagonian plate. An investigation of the rocks that succeed the erosional unconformity shows that they constitute a shear-zone-formation which is tectonically overlain by Cretaceous platform carbonates that characterise the Palouki series of Skopelos and Alonnisos. Geochemical analyses of the shear-zone rocks substantiate that they are of mid ocean ridge and island arc provenience. Eastern Pelagonia collided with a Cretaceous carbonate platform, probably the Paikon-Paeonian forearc basin, as the Almopias ocean subducted beneath that island-arc-complex. The Cretaceous platform, together with a substrate of sheared-off ocean floor mélange, overthrust eastern Pelagonia as subduction continued, and the substrate was dynamically metamorphosed to cataclastic rocks, mylonite, phyllonite and interpreted pseudotachylite. This complex of Cretaceous platform rocks and a brittle-ductile shear-zone-substrate constitute the here named Paikon-Palouki nappe which was emplaced during Early Palaeocene. The Paikon-Palouki nappe did not reach Evvoia. Seismic tomographic models of the Aegean region apparently depict images of two broken-off ocean-plate-slabs, interpreted as Almopias-lithosphere-slabs: the western Almopias slab began to sink during the Early Cretaceous, the eastern Almopias slab broke off and sank after the Paikon-Palouki nappe was emplaced in Early Palaeocene time.

2019 ◽  
Author(s):  
Rudolph Scherreiks ◽  
Marcelle Boudagher-Fadel ◽  
Marcelle Boudagher-Fadel ◽  
Marcelle Boudagher-Fadel

The Pelagonian stratigraphy of the study area consists of a Permo-Triassic basement and an Upper Triassic and Jurassic carbonate platform formation that had been overthrust by the Eohellenic ophiolite sheet during the Early Cretaceous. Intensive erosion, during the Cretaceous, removed most of the ophiolite and partly the Jurassic formation. It is hypothesised that uplift and erosion of eastern Pelagonia had been triggered by the break-off of the subducted oceanic leading edge of the Pelagonian plate. An investigation of the rocks that succeed the erosional unconformity shows that they constitute a shear-zone-formation which is tectonically overlain by Cretaceous platform carbonates that characterise the Palouki series of Skopelos and Alonnisos. Geochemical analyses of the shear-zone rocks substantiate that they are of mid ocean ridge and island arc provenience. Eastern Pelagonia collided with a Cretaceous carbonate platform, probably the Paikon-Paeonian forearc basin, as the Almopias ocean subducted beneath that island-arc-complex. The Cretaceous platform, together with a substrate of sheared-off ocean floor mélange, overthrust eastern Pelagonia as subduction continued, and the substrate was dynamically metamorphosed to cataclastic rocks, mylonite, phyllonite and interpreted pseudotachylite. This complex of Cretaceous platform rocks and a brittle-ductile shear-zone-substrate constitute the here named Paikon-Palouki nappe which was emplaced during Early Palaeocene. The Paikon-Palouki nappe did not reach Evvoia. Seismic tomographic models of the Aegean region apparently depict images of two broken-off ocean-plate-slabs, interpreted as Almopias-lithosphere-slabs: the western Almopias slab began to sink during the Early Cretaceous, the eastern Almopias slab broke off and sank after the Paikon-Palouki nappe was emplaced in Early Palaeocene time.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Rudolph Scherreiks ◽  
Marcelle Boudagher-Fadel

The Pelagonian stratigraphy of the Internal Hellenides consists of a Permo-Triassic basement and an Upper Triassic and Jurassic carbonate platform formation that has been overthrust by the Eohellenic ophiolite sheet during the Early Cretaceous. Intensive erosion, during the Cretaceous, removed most of the ophiolite and parts of the Jurassic formation. It is hypothesised that uplift and erosion of eastern Pelagonia was triggered by the break-off of the subducted oceanic leading edge of the Pelagonian plate. An investigation of the rocks that succeed the erosional unconformity shows that they constitute a shear-zone that is tectonically overlain by Cretaceous platform carbonates. Geochemical analyses of the shear-zone rocks substantiate that they are of mid-oceanic ridge and island arc provenience. Eastern Pelagonia collided with a Cretaceous carbonate platform, probably the Paikon forearc basin, as the Almopias ocean crust subducted beneath that island–arc complex. The Cretaceous platform, together with a substrate of sheared-off ocean floor mélange, overthrust eastern Pelagonia as subduction continued, and the substrate was dynamically metamorphosed into cataclastic rocks, mylonite, phyllonite and interpreted pseudotachylite. This complex of Cretaceous platform rocks and a brittle-ductile shear-zone-substrate constitute the here named Paikon–Palouki nappe, which was emplaced during Early Palaeocene. The Paikon–Palouki nappe did not reach Evvoia. Seismic tomographic models of the Aegean region apparently depict images of two broken-off ocean-plate-slabs, interpreted as Almopias-lithosphere-slabs. It is concluded that the western Almopias slab began to sink during the Early Cretaceous, while the eastern Almopias slab broke off and sank after the Paikon–Palouki nappe was emplaced in the Early Palaeocene.


2021 ◽  
Author(s):  
Pritam Ghosh ◽  
Kathakali Bhattacharyya

<p>We examine how the deformation profile and kinematic evolutionary paths of two major shear zones with prolonged deformation history and large translations differ with varying structural positions along its transport direction in an orogenic wedge. We conduct this analysis on multiple exposures of the internal thrusts from the Sikkim Himalayan fold thrust belt, the Pelling-Munsiari thrust (PT), the roof thrust of the Lesser Himalayan duplex (LHD), and the overlying Main Central thrust (MCT). These two thrusts are regionally folded due to growth of the LHD and are exposed at different structural positions. The hinterlandmost exposures of the MCT and PT zones lie in the trailing parts of the duplex, while the foreland-most exposures of the same studied shear zones lie in the leading part of the duplex, and thus have recorded a greater connectivity with the duplex. The thicknesses of the shear zones progressively decrease toward the leading edge indicating variation in deformation conditions. Thickness-displacement plot reveals strain-softening from all the five studied MCT and the PT mylonite zones. However, the strain-softening mechanisms varied along its transport direction with the hinterland exposures recording dominantly dislocation-creep, while dissolution-creep and reaction-softening are dominant in the forelandmost exposures. Based on overburden estimation, the loss of overburden on the MCT and the PT zones is more in the leading edge (~26km and ~15km, respectively) than in the trailing edge (~10km and ~17km, respectively), during progressive deformation. Based on recalibrated recrystallized quartz grain thermometer (Law, 2014), the estimated deformation temperatures in the trailing edge are higher (~450-650°C) than in the leading edge (350-550°C) of the shear zones. This variation in the deformation conditions is also reflected in the shallow-crustal deformation structures with higher fracture intensity and lower spacing in the leading edge exposures of the shear zones as compared to the trailing edge exposures.</p><p>The proportion of mylonitic domains and micaceous minerals within the exposed shear zones increase and grain-size of the constituent minerals decreases progressively along the transport direction. This is also consistent with progressive increase in mean R<sub>s</sub>-values toward leading edge exposures of the same shear zones. Additionally, the α-value (stretch ratio) gradually increases toward the foreland-most exposures along with increasing angular shear strain. Vorticity estimates from multiple incremental strain markers indicate that the MCT and PT zones generally record a decelerating strain path. Therefore, the results from this study are counterintuitive to the general observation of a direct relationship between higher Rs-value and higher pure-shear component. We explain this observation in the context of the larger kinematics of the orogen, where the leading edge exposures have passed through the duplex structure, recording the greatest connectivity and most complete deformation history, resulting in the weakest shear zone that is also reflected in the deformation profiles and strain attributes. This study demonstrates that the same shear zone records varying deformation profile, strain and kinematic evolutionary paths due to varying deformation conditions and varying connectivity to the underlying footwall structures during progressive deformation of an orogenic wedge.</p>


2009 ◽  
Vol 180 (2) ◽  
pp. 105-115 ◽  
Author(s):  
Jean-Pierre Masse ◽  
Michel Villeneuve ◽  
Emmanuelle Leonforte ◽  
Jean Nizou

Abstract In the western part of the Castellane tectonic arc, the so-called “ Provence platform area “, corresponding to the foreland of the Alpine nappes (figs. 1–2), is marked by Tithonian-Berriasian shallow water carbonates capped by hemipelagic sediments deposited from the Valanginian up to the Aptian-Albian. A detailed biostratigraphic study of the Berriasian succession, based on calcareous algae and foraminifera, allows us to distinguish a Lower to Middle Berriasian, with Clypeina sulcata, Clypeina isabellae and Holosporella sarda, from an Upper Berriasian with Pfenderina neocomiensis, Danubiella cernavodensis, Falsolikanella campanensis and Macroporella praturloni (fig. 3). We performed a field survey of 30 sites located from Quinson to the west, and Escragnolles to the east (figs. 4–5) including the study of measured stratigraphic sections and the collection of samples for biostratigraphic interpretations. These stratigraphic investigations show that below the Valanginian beds, the Berriasian platfom carbonate succession, is locally incomplete, i.e. Upper Berriasian beds are frequently absent. During the Early and Middle Berriasian, depositional environments are marked by a strong bathymetric instability, with frequent subaerial exposure events, and a significant marine restriction; by contrast, during the Late Berriasian, the overall biological diversity increases and water agitation as well, which means a significant marine opening towards the basin. The Upper Berriasian hiatus is consequently regarded as the result of a Berriasian/Valanginian and/or a lowermost Valanginian erosion (fig. 6). The spatial distribution of complete or truncated Berriasian successions identifies east-west bands, in each band truncated series are located northward and complete series are located southward. Bands are limited by thrust or strip faults interpreted as palaeofaults reactivated during the Alpine orogeny (fig. 7). These fault-bounded blocks, 3 to 10 km in width, known as the Aiguine, La Palud-sur-Verdon, Carajuan-Audibergue and Peyroulles-La Foux blocks, are southerly rotated by 1 to 2o. We regard this structural architecture as the result of basinward tilting of blocks. Due to their rotation, the uplifted parts were eroded whereas the depressed parts were protected against erosion (fig. 8). Such a dynamic behavior reflects a distensive tectonic regime, which has been active at least during the Valanginian, that is after the drowning of the North-Provence carbonate platform. These structural events are considered as the regional expression of the Neocimmerian tectonic phase coupled with an enhancement of the Atlantic rifting. The orientation of the major Alpine structural elements (folds and faults) of the Castellane arc, is mostly inherited from these early Cretaceous tectonic events.


2019 ◽  
Vol 93 (2) ◽  
pp. 244-259
Author(s):  
Silviu O. Martha ◽  
Paul D. Taylor ◽  
William L. Rader

AbstractThe Glen Rose and Walnut formations of southcentral and northcentral Texas comprise shallow-water carbonates deposited during the late Aptian to middle Albian on a carbonate platform. The formations are famous for their rich fossil faunas. Although bryozoans are absent in late Aptian sediments, they are frequently found encrusting bivalve shells from the early to middle Albian parts of these formations. Here, we describe the cyclostome bryozoan fauna, which includes six species;Stomatoporasp.,Oncousoecia khirarn. sp.,Reptomultisparsa mclemoreaen. sp.,Hyporosopora keeran. sp.,Mesonopora bernardwalterin. sp., and ?Unicaveasp. Most cyclostomes are found encrusting rudist shells from Unit 2 of the Lower Member of the Glen Rose Formation and units 3 and 6 of the Upper Member of the Glen Rose Formation.UUID:http://zoobank.org/4380dcb5-63b2-4aa9-959c-09eb6b03831f


Sign in / Sign up

Export Citation Format

Share Document