Superconductivity: From Discoveries to Thin Film Devices

2021 ◽  
Author(s):  
Larry Scipioni ◽  
Keyword(s):  
1967 ◽  
Vol 34 (2) ◽  
pp. 97 ◽  
Author(s):  
H. Freller ◽  
K.G. Günther
Keyword(s):  

Nano Energy ◽  
2021 ◽  
Vol 83 ◽  
pp. 105827
Author(s):  
Kamala Khanal Subedi ◽  
Adam B. Phillips ◽  
Niraj Shrestha ◽  
Fadhil K. Alfadhili ◽  
Anna Osella ◽  
...  

2021 ◽  
Vol 327 ◽  
pp. 112786
Author(s):  
Kazuki Ueda ◽  
Sang-Hyo Kweon ◽  
Hirotaka Hida ◽  
Yoshiharu Mukouyama ◽  
Isaku Kanno

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 204
Author(s):  
Yuhao Zhou ◽  
Bowen Ji ◽  
Minghao Wang ◽  
Kai Zhang ◽  
Shuaiqi Huangfu ◽  
...  

Remarkable progress has been made in the high resolution, biocompatibility, durability and stretchability for the implantable brain-computer interface (BCI) in the last decades. Due to the inevitable damage of brain tissue caused by traditional rigid devices, the thin film devices are developing rapidly and attracting considerable attention, with continuous progress in flexible materials and non-silicon micro/nano fabrication methods. Therefore, it is necessary to systematically summarize the recent development of implantable thin film devices for acquiring brain information. This brief review subdivides the flexible thin film devices into the following four categories: planar, open-mesh, probe, and micro-wire layouts. In addition, an overview of the fabrication approaches is also presented. Traditional lithography and state-of-the-art processing methods are discussed for the key issue of high-resolution. Special substrates and interconnects are also highlighted with varied materials and fabrication routines. In conclusion, a discussion of the remaining obstacles and directions for future research is provided.


1981 ◽  
Vol 52 (5) ◽  
pp. 3590-3599 ◽  
Author(s):  
V. Marrello ◽  
L. Samuelson ◽  
A. Onton ◽  
W. Reuter

Sign in / Sign up

Export Citation Format

Share Document