piezoelectric thin film
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 38)

H-INDEX

20
(FIVE YEARS 3)

Friction ◽  
2022 ◽  
Author(s):  
Jiawei Cao ◽  
Qunyang Li

AbstractMechanical vibration, as an alternative of application of solid/liquid lubricants, has been an effective means to modulate friction at the macroscale. Recently, atomic force microscopy (AFM) experiments and model simulations also suggest a similar vibration-induced friction reduction effect for nanoscale contact interfaces, although an additional external vibration source is typically needed to excite the system. Here, by introducing a piezoelectric thin film along the contact interface, we demonstrate that friction measured by a conductive AFM probe can be significantly reduced (more than 70%) when an alternating current (AC) voltage is applied. Such real-time friction modulation is achieved owing to the localized nanoscale vibration originating from the intrinsic inverse piezoelectric effect, and is applicable for various material combinations. Assisted by analysis with the Prandtl—Tomlinson (P—T) friction model, our experimental results suggest that there exists an approximately linear correlation between the vibrational amplitude and the relative factor for perturbation of sliding energy corrugation. This work offers a viable strategy for realizing active friction modulation for small-scale interfaces without the need of additional vibration source or global excitation that may adversely impact device functionalities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ted Sian Lee ◽  
Ean Hin Ooi ◽  
Wei Sea Chang ◽  
Ji Jinn Foo

AbstractThe centerline streamwise and cross-sectional (x/Dh = 0.425) turbulence characteristics of a 2D planar space-filling square-fractal-grid (SFG) composed of self-similar patterns superimposed at multiple length-scales is experimentally unveiled via piezoelectric thin-film flapping velocimetry (PTFV). The fluid–structure-interaction between a flexible piezoelectric thin-film and SFG-generated turbulent flow at ReDh = 4.1 × 104 is investigated by analysis of the thin-film’s mechanical response. Measurements of the thin-film-tip deflection δ and induced voltage V demonstrate increasing flow fluctuation strength in the turbulence generation region, followed by rapid decay further downstream of the SFG. Interestingly, SFG-induced turbulence enables the generation of maximum centerline thin-film’s response (Vrms, δrms) and millinewton turbulence-forcing (turbulence-induced excitation force acting on the thin-film) Frms which are respectively, 7× and 2× larger than the classical square-regular-grid of similar blockage ratio. The low frequency, large-scale energy-containing eddies at SFG’s central opening plays a critical role in driving the thin-film vibration. Most importantly, the SFG-generated turbulence at (y/T = 0.106, z/T = 0.125) away from the centerline allows equivalent mechanical characteristics of turbulence generation and decay, with peak of 1.9× nearer from grid. In short, PTFV provides a unique expression of the SFG-generated turbulence, of which, the equivalent turbulence length-scale and induced-forcing deduced could aid in deciphering the flow dynamics for effective turbulence management.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1151
Author(s):  
Chan-Yu Chung ◽  
Ying-Chung Chen ◽  
Yu-Cheng Chen ◽  
Kuo-Sheng Kao ◽  
Yu-Chen Chang

In this study, a 3.5-GHz solidly mounted resonator (SMR) was developed by doping scandium in aluminum nitride to form AlScN as the piezoelectric thin film. Molybdenum (Mo) of 449 nm thickness and silicon dioxide (SiO2) of 371 nm thickness were used as the high and low acoustic impedance films, respectively, which were alternately stacked on a silicon substrate to form a Bragg reflector. Then, an alloy target with atomic ratio of 15% Sc was adopted to deposit the piezoelectric AlScN thin film on the Bragg reflector, using a radio frequency magnetron sputtering system. The characteristics of the c-axis orientation of the AlScN thin films were optimized by adjusting sputtering parameters as sputtering power of 250 W, sputtering pressure of 20 mTorr, nitrogen gas ratio of 20%, and substrate temperature of 300 °C. Finally, a metal top electrode was coated to form a resonator. The X-ray diffraction (XRD) analysis showed that the diffraction peak angles of the AlScN film shifted towards lower angles in each crystal phase, compared to those of AlN film. The energy dispersive X-ray spectrometer (EDX) analysis showed that the percentage of scandium atom in the film is about 4.5%, regardless of the sputtering conditions. The fabricated resonator exhibited a resonance frequency of 3.46 GHz, which was a small deviation from the preset resonance frequency of 3.5 GHz. The insertion loss of −10.92 dB and the electromechanical coupling coefficient of 2.24% were obtained. As compared to the AlN-based device, the AlScN-based resonator exhibited an improved electromechanical coupling coefficient by about two times.


2021 ◽  
Vol 327 ◽  
pp. 112786
Author(s):  
Kazuki Ueda ◽  
Sang-Hyo Kweon ◽  
Hirotaka Hida ◽  
Yoshiharu Mukouyama ◽  
Isaku Kanno

2021 ◽  
Vol 1173 (1) ◽  
pp. 012043
Author(s):  
A T Hazmi ◽  
F B Ahmad ◽  
M H Maziati Akmal ◽  
A A M Ralib

2021 ◽  
Vol 6 (55) ◽  
pp. eabe7906
Author(s):  
Jiaming Liang ◽  
Yichuan Wu ◽  
Justin K. Yim ◽  
Huimin Chen ◽  
Zicong Miao ◽  
...  

Agility and trajectory control are two desirable features for robotics, but they become very challenging for soft robots without rigid structures to support rapid manipulations. Here, a curved piezoelectric thin film driven at its structural resonant frequency is used as the main body of an insect-scale soft robot for its fast translational movements, and two electrostatic footpads are used for its swift rotational motions. These two schemes are simultaneously executed during operations through a simple two-wire connection arrangement. A high relative centripetal acceleration of 28 body length per square second compared with existing robots is realized on a 65-milligram tethered prototype, which is better than those of common insects, including the cockroach. The trajectory manipulation demonstration is accomplished by navigating the robot to pass through a 120-centimeter-long track in a maze within 5.6 seconds. One potential application is presented by carrying a 180-milligram on-board sensor to record a gas concentration route map and to identify the location of the leakage source. The radically simplified analog motion adjustment technique enables the scale-up construction of a 240-milligram untethered robot. Equipped with a payload of 1660 milligrams to include the control circuit, a battery, and photoresistors, the untethered prototype can follow a designated, 27.9-centimeter-long “S”-shaped path in 36.9 seconds. These results validate key performance attributes in achieving both high mobility and agility to emulate living agile insects for the advancements of soft robots.


2021 ◽  
Vol 47 (11) ◽  
pp. 16029-16036
Author(s):  
Masato Uehara ◽  
Yuki Amano ◽  
Sri Ayu Anggraini ◽  
Kenji Hirata ◽  
Hiroshi Yamada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document