scholarly journals Implantable Thin Film Devices as Brain-Computer Interfaces: Recent Advances in Design and Fabrication Approaches

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 204
Author(s):  
Yuhao Zhou ◽  
Bowen Ji ◽  
Minghao Wang ◽  
Kai Zhang ◽  
Shuaiqi Huangfu ◽  
...  

Remarkable progress has been made in the high resolution, biocompatibility, durability and stretchability for the implantable brain-computer interface (BCI) in the last decades. Due to the inevitable damage of brain tissue caused by traditional rigid devices, the thin film devices are developing rapidly and attracting considerable attention, with continuous progress in flexible materials and non-silicon micro/nano fabrication methods. Therefore, it is necessary to systematically summarize the recent development of implantable thin film devices for acquiring brain information. This brief review subdivides the flexible thin film devices into the following four categories: planar, open-mesh, probe, and micro-wire layouts. In addition, an overview of the fabrication approaches is also presented. Traditional lithography and state-of-the-art processing methods are discussed for the key issue of high-resolution. Special substrates and interconnects are also highlighted with varied materials and fabrication routines. In conclusion, a discussion of the remaining obstacles and directions for future research is provided.

2013 ◽  
Vol 1436 ◽  
Author(s):  
Ichiro Yamashita

ABSTRACTA new nano-fabrication process, utilizing protein supramolecules, biomineralization, and nano-etching was proposed, which was named Bio Nano Process (BNP). The main processes of the BNP include the nanoparticle (NP) or nanowire (NW) synthesis utilizing bio-template (biomineralization) and nanostructure fabrication utilizing self-organization of protein supramolecules. Proteins are so designed to produce the final structures. The space where nano functional structures are fabricated is named an “Active Bio-field”. It was proven that the process has vast potential to be applied to a wide range of quantum effect base nano-devices and thin film devices.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 217
Author(s):  
Denis Music ◽  
Andreas M. Krause ◽  
Pär A. T. Olsson

The present research front of NbO2 based memory, energy generation, and storage thin film devices is reviewed. Sputtering plasmas contain NbO, NbO2, and NbO3 clusters, affecting nucleation and growth of NbO2, often leading to a formation of nanorods and nanoslices. NbO2 (I41/a) undergoes the Mott topological transition at 1081 K to rutile (P42/mnm), yielding changes in the electronic structure, which is primarily utilized in memristors. The Seebeck coefficient is a key physical parameter governing the performance of thermoelectric devices, but its temperature behavior is still controversial. Nonetheless, they perform efficiently above 900 K. There is a great potential to improve NbO2 batteries since the theoretical capacity has not been reached, which may be addressed by future diffusion studies. Thermal management of functional materials, comprising thermal stress, thermal fatigue, and thermal shock, is often overlooked even though it can lead to failure. NbO2 exhibits relatively low thermal expansion and high elastic modulus. The future for NbO2 thin film devices looks promising, but there are issues that need to be tackled, such as dependence of properties on strain and grain size, multiple interfaces with point and extended defects, and interaction with various natural and artificial environments, enabling multifunctional applications and durable performance.


2007 ◽  
Vol 1022 ◽  
Author(s):  
Xi Wang ◽  
Younes Ezzahri ◽  
James Christofferson ◽  
Yi Zhang ◽  
Ali Shakouri ◽  
...  

AbstractIn this paper, we studied heat transfer properties of a 230nm wide,450nm thick and 5.4 m long single tin dioxide nanobelt using non-contacted high resolution thermoreflectance imaging technique. Temperature difference across the nanobelt was created by attaching its both ends to a microfabricated thin film heater and sensor pair. High resolution thermal images of the nanobelt and thin film devices were obtained at variant pulsing current amplitudes and frequencies, which allowed us to study the inherent thermal conductance of the nanobelt. Thermal expansion induced thermoreflectance coefficient change is also discussed in this paper.


2013 ◽  
Vol 2013 ◽  
pp. 1-53 ◽  
Author(s):  
Damon M. Chandler

Image quality assessment (IQA) has been a topic of intense research over the last several decades. With each year comes an increasing number of new IQA algorithms, extensions of existing IQA algorithms, and applications of IQA to other disciplines. In this article, I first provide an up-to-date review of research in IQA, and then I highlight several open challenges in this field. The first half of this article provides discuss key properties of visual perception, image quality databases, existing full-reference, no-reference, and reduced-reference IQA algorithms. Yet, despite the remarkable progress that has been made in IQA, many fundamental challenges remain largely unsolved. The second half of this article highlights some of these challenges. I specifically discuss challenges related to lack of complete perceptual models for: natural images, compound and suprathreshold distortions, and multiple distortions, and the interactive effects of these distortions on the images. I also discuss challenges related to IQA of images containing nontraditional, and I discuss challenges related to the computational efficiency. The goal of this article is not only to help practitioners and researchers keep abreast of the recent advances in IQA, but to also raise awareness of the key limitations of current IQA knowledge.


2021 ◽  
Vol 11 ◽  
Author(s):  
Maria Clara de Oliveira Urquiaga ◽  
Flávia Thiebaut ◽  
Adriana Silva Hemerly ◽  
Paulo Cavalcanti Gomes Ferreira

Remarkable progress has been made in elucidating important roles of plant non-coding RNAs. Among these RNAs, long noncoding RNAs (lncRNAs) have gained widespread attention, especially their role in plant environmental stress responses. LncRNAs act at different levels of gene expression regulation, and one of these mechanisms is by recruitment of DNA methyltransferases or demethylases to regulate the target gene transcription. In this mini-review, we highlight the function of lncRNAs, including their potential role in RNA-directed DNA Methylation (RdDM) silencing pathway and their potential function under abiotic stresses conditions. Moreover, we also present and discuss studies of lncRNAs in crops. Finally, we propose a path outlook for future research that may be important for plant breeding.


Author(s):  
Paul G. Kotula ◽  
C. Barry Carter

Thin-film reactions in ceramic systems are of increasing importance as materials such as oxide superconductors and ferroelectrics are applied in thin-film form. In fact, reactions have been found to occur during the growth of YBa2Cu3O6+x on ZrO2. Additionally, thin-film reactions have also been intentionally initiated for the production of buffer layers for the subsequent growth of high-Tc superconductor thin films. The problem is that the kinetics of ceramic thin-film reactions are not well understood when the reaction layer is very thin; that is, when the rate-limiting step is a phase-boundary reaction as opposed to diffusion of the reactants through the product layer. In this case, the reaction layer is likely to be laterally non-uniform. In the present study, the measurement of thin reaction-product layers is accomplished by first digitally acquiring backscattered-electron images in a high-resolution field-emission scanning electron microscope (FESEM) followed by image analysis. Furthermore, the problem of measuring such small thicknesses (e.g., 20-500nm) over lengths of interfaces longer than 3mm is addressed.


Author(s):  
K. Ogura ◽  
H. Nishioka ◽  
N. Ikeo ◽  
T. Kanazawa ◽  
J. Teshima

Structural appraisal of thin film magnetic media is very important because their magnetic characters such as magnetic hysteresis and recording behaviors are drastically altered by the grain structure of the film. However, in general, the surface of thin film magnetic media of magnetic recording disk which is process completed is protected by several-nm thick sputtered carbon. Therefore, high-resolution observation of a cross-sectional plane of a disk is strongly required to see the fine structure of the thin film magnetic media. Additionally, observation of the top protection film is also very important in this field.Recently, several different process-completed magnetic disks were examined with a UHR-SEM, the JEOL JSM 890, which consisted of a field emission gun and a high-performance immerse lens. The disks were cut into approximately 10-mm squares, the bottom of these pieces were carved into more than half of the total thickness of the disks, and they were bent. There were many cracks on the bent disks. When these disks were observed with the UHR-SEM, it was very difficult to observe the fine structure of thin film magnetic media which appeared on the cracks, because of a very heavy contamination on the observing area.


1967 ◽  
Vol 34 (2) ◽  
pp. 97 ◽  
Author(s):  
H. Freller ◽  
K.G. Günther
Keyword(s):  

1997 ◽  
Vol 503 ◽  
Author(s):  
Yongxia Zhang ◽  
Yanwei Zhang ◽  
Juliana Blaser ◽  
T. S. Sriiram ◽  
R. B. Marcus

ABSTRACTA thermal microprobe has been designed and built for high resolution temperature sensing. The thermal sensor is a thin-film thermocouple junction at the tip of an Atomic Force Microprobe (AFM) silicon probe needle. Only wafer-stage processing steps are used for the fabrication. The thermal response over the range 25–s 4.5–rovolts per degree C and is linear.


2013 ◽  
Vol 61 (3) ◽  
pp. 731-735
Author(s):  
A.W. Stadler ◽  
Z. Zawiślak ◽  
W. Stęplewski ◽  
A. Dziedzic

Abstract. Noise studies of planar thin-film Ni-P resistors made in/on Printed Circuit Boards, both covered with two different types of cladding or uncladded have been described. The resistors have been made of the resistive-conductive-material (Ohmega-Ply©) of 100 Ώ/sq. Noise of the selected pairs of samples has been measured in the DC resistance bridge with a transformer as the first stage in a signal path. 1/f noise caused by resistance fluctuations has been found to be the main noise component. Parameters describing noise properties of the resistors have been calculated and then compared with the parameters of other previously studied thin- and thick-film resistive materials.


Sign in / Sign up

Export Citation Format

Share Document