Effect of Duplex Heat Treatment on Tribological Behavior of TC21 Titanium Alloy

2017 ◽  
Vol 6 (0) ◽  
pp. 1 ◽  
Author(s):  
Ramadan N. Elshaer ◽  
Khaled M. Ibrahim ◽  
Azza F. Barakat ◽  
Reham R. Abbas
Alloy Digest ◽  
1969 ◽  
Vol 18 (6) ◽  

Abstract Ti-5A1-4FeCr is an alpha-beta type titanium alloy recommended for airframe components. It responds to an age-hardening heat treatment. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-58. Producer or source: Titanium alloy mills.


Author(s):  
Abhijit Biswas ◽  
Suman Kalyan Das ◽  
Prasanta Sahoo

The microstructural changes of electroless Ni–P–Cu coating at various heat-treatment conditions are investigated to understand its implications on the tribological behavior of the coating. Coatings are heat-treated at temperatures ranging between 200°C and 800 °C and for 1–4 h duration. Ni–P–Cu coatings exhibit two-phase transformations in the temperature range of 350–450 °C and the resulting microstructural changes are found to significantly affect their thermal stability and tribological attributes. Hardness of the coating doubles when heat-treated at 452 °C, due to the formation of harder Ni3P phase and crystalline NiCu. Better friction and wear performance are also noted upon heat treatment of the coating at the phase transformation regime, particularly at 400 °C. Wear mechanism is characterized by a mixed adhesive cum abrasive wear phenomena. Heat treatment at higher temperature (600 °C and above) and longer duration (4 h) results in grain coarsening phenomenon, which negatively influences the hardness and tribological characteristics of the coating. Besides, diffusion of iron from the ferrous substrate as well as greater oxide formation are noticed when the coating is heat-treated at higher temperatures and for longer durations (4 h).


2016 ◽  
Vol 25 (3) ◽  
pp. 734-743 ◽  
Author(s):  
Jianwei Xu ◽  
Weidong Zeng ◽  
Zhiqiang Jia ◽  
Xin Sun ◽  
Yawei Zhao

2021 ◽  
Vol 1016 ◽  
pp. 906-910
Author(s):  
Xin Hua Min ◽  
Cheng Jin

In this paper,effect of the different forging processes on the microstructure and mechanical properties of the flat flat billets of TA15 titanium alloy was investigated.The flat billiets of 80 mm×150 mm×L sizes of TA15 titanium alloy are produced by four different forging processes.Then the different microstrure and properties of the flat billiets were obtained by heat treatment of 800 °C~850 °C×1 h~4h.The results show that, adopting the first forging temperature at T1 °C、slow cooling and the second forging temperature at T2°C 、quick cooling, the primary αphases content is just 10%, and there are lots of thin aciculate phases on the base. This microstructure has both high strength at room temperature and high temperature, while the properties between the cross and lengthwise directions are just the same. So the hot processing of the first forging temperature at T1 °C、slow cooling and the second forging temperature at T2°C 、quick cooling is choosed as the ideal processing for production of aircraft frame parts.


Sign in / Sign up

Export Citation Format

Share Document