scholarly journals β21S titanium alloy heat treatment development and improvement

2017 ◽  
Author(s):  
Tony Wilson
2014 ◽  
Vol 59 (4) ◽  
pp. 1713-1716 ◽  
Author(s):  
R. Dąbrowski

Abstract Mechanical properties of the two-phase titanium alloy Ti6Al7Nb, after the heat treatment based on soaking this alloy in the α + β range, cooling in water or oil and ageing at two selected temperatures, were determined in the hereby paper. The alloy mechanical properties were determined in tensile and impact tests, supported by the fractographic analysis of fractures. In addition, its hardness was measured and the analysis of changes occurring in the microstructure was performed for all variants of the alloy heat treatment. Regardless of the applied cooling rate of the alloy, from a temperature of 970°C followed by ageing at 450 and 650°C, none essential changes were noticed in its microstructure. It was shown that applying less intensive cooling medium (oil) instead of water (before tempering) decreases strength properties indicators, i.e. tensile strength and yield strength as well as hardness (only slightly). The decrease of the above mentioned indicators is accompanied by an increase of an elongation and impacts strength. Fractures of tensile and impact tests are of a ductile character regardless of the applied heat treatment.


2013 ◽  
Vol 652-654 ◽  
pp. 1076-1079
Author(s):  
Bing Zhou ◽  
Shang Zhou Zhang

The relationship of microstructure and properties of Ti-6.5Al-1.5Mo-2.5V-2Zr titanium alloy heat-treated in the α+β phase field was studied. It was found that globular or bimodal microstructures were obtained for alloy annealed at 400-950°C. Ductility decreased with increasing annealing temperature, while the strength showed a minimum at 800°C. The properties at the center of billet are lower than that at the edge due to the low cooling rate after forging. With the increase of test temperature, the strength decreased and ductility increased.


Alloy Digest ◽  
1969 ◽  
Vol 18 (6) ◽  

Abstract Ti-5A1-4FeCr is an alpha-beta type titanium alloy recommended for airframe components. It responds to an age-hardening heat treatment. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-58. Producer or source: Titanium alloy mills.


2016 ◽  
Vol 25 (3) ◽  
pp. 734-743 ◽  
Author(s):  
Jianwei Xu ◽  
Weidong Zeng ◽  
Zhiqiang Jia ◽  
Xin Sun ◽  
Yawei Zhao

2016 ◽  
Vol 97 ◽  
pp. 141-146 ◽  
Author(s):  
Taywin Buasri ◽  
Hyunbo Shim ◽  
Masaki Tahara ◽  
Tomonari Inamura ◽  
Kenji Goto ◽  
...  

The effect of heat treatment temperature from 1173 K to 1373 K for 3.6 ks on mechanical and superelastic properties of an Ni-free Au-51Ti-18Co alloy (mol%) was investigated. The stress for inducing martensitic transformation (SIMT) and the critical stress for slip deformation (CSS) slightly decrease with increasing the heat–treatment temperature. Regardless of heat–treatment temperature, good superelasticity was definitely recognized with the maximum shape recovery ratio up to 95 % and 4 % superelastic shape recovery strain. As the mentioned reasons, the Au-51Ti-18Co alloy is promising for practical biomedical applications.


2021 ◽  
Vol 1016 ◽  
pp. 906-910
Author(s):  
Xin Hua Min ◽  
Cheng Jin

In this paper,effect of the different forging processes on the microstructure and mechanical properties of the flat flat billets of TA15 titanium alloy was investigated.The flat billiets of 80 mm×150 mm×L sizes of TA15 titanium alloy are produced by four different forging processes.Then the different microstrure and properties of the flat billiets were obtained by heat treatment of 800 °C~850 °C×1 h~4h.The results show that, adopting the first forging temperature at T1 °C、slow cooling and the second forging temperature at T2°C 、quick cooling, the primary αphases content is just 10%, and there are lots of thin aciculate phases on the base. This microstructure has both high strength at room temperature and high temperature, while the properties between the cross and lengthwise directions are just the same. So the hot processing of the first forging temperature at T1 °C、slow cooling and the second forging temperature at T2°C 、quick cooling is choosed as the ideal processing for production of aircraft frame parts.


Sign in / Sign up

Export Citation Format

Share Document