Inversion of Solar-Induced Chlorophyll Fluorescence Using Polarization Measurements of Vegetation

2021 ◽  
Vol 87 (5) ◽  
pp. 331-338
Author(s):  
Haiyan Yao ◽  
Ziying Li ◽  
Yang Han ◽  
Haofang Niu ◽  
Tianyi Hao ◽  
...  

In vegetation remote sensing, the apparent radiation of the vegetation canopy is often combined with three components derived from different parts of vegetation that have different production mechanisms and optical properties: volume scattering Lvol, polarized light Lpol, and chlorophyll fluorescence ChlF. The chlorophyll fluorescence plays a very important role in vegetation remote sensing, and the polarization information in vegetation remote sensing has become an effective way to characterize the physical characteristics of vegetation. This study analyzes the difference between these three types of radiation flux and utilizes polarization radiation to separate them from the apparent radiation of the vegetation canopy. Specifically, solar-induced chlorophyll fluorescence is extracted from vegetation canopy radiation data using standard Fraunhofer-line discrimination. The results show that polarization measurements can quantitatively separate Lvol, Lpol, and ChlF and extract the solar-induced chlorophyll fluorescence. This study improves our understanding of the light-scattering properties of vegetation canopies and provides insights for developing building models and research algorithms.

2021 ◽  
Vol 973 (7) ◽  
pp. 21-31
Author(s):  
Е.А. Rasputina ◽  
A.S. Korepova

The mapping and analysis of the dates of onset and melting the snow cover in the Baikal region for 2000–2010 based on eight-day MODIS “snow cover” composites with a spatial resolution of 500 m, as well as their verification based on the data of 17 meteorological stations was carried out. For each year of the decennary under study, for each meteorological station, the difference in dates determined from the MODIS data and that of weather stations was calculated. Modulus of deviations vary from 0 to 36 days for onset dates and from 0 to 47 days – for those of stable snow cover melting, the average of the deviation modules for all meteorological stations and years is 9–10 days. It is assumed that 83 % of the cases for the onset dates can be considered admissible (with deviations up to 16 days), and 79 % of them for the end dates. Possible causes of deviations are analyzed. It was revealed that the largest deviations correspond to coastal meteorological stations and are associated with the inhomogeneity of the characteristics of the snow cover inside the pixels containing water and land. The dates of onset and melting of a stable snow cover from the images turned out to be later than those of weather stations for about 10 days. First of all (from the end of August to the middle of September), the snow is established on the tops of the ranges Barguzinsky, Baikalsky, Khamar-Daban, and later (in late November–December) a stable cover appears in the Barguzin valley, in the Selenga lowland, and in Priolkhonye. The predominant part of the Baikal region territory is covered with snow in October, and is released from it in the end of April till the middle of May.


2018 ◽  
Vol 10 (11) ◽  
pp. 1764 ◽  
Author(s):  
Qinhuo Liu ◽  
Guangjian Yan ◽  
Ziti Jiao ◽  
Qing Xiao ◽  
Jianguang Wen ◽  
...  

The academician Xiaowen Li devoted much of his life to pursuing fundamental research in remote sensing. A pioneer in the geometric-optical modeling of vegetation canopies, his work is held in high regard by the international remote sensing community. He codeveloped the Li–Strahler geometric-optic model, and this paper was selected by a member of the International Society for Optical Engineering (SPIE) milestone series. As a chief scientist, Xiaowen Li led a scientific team that made outstanding advances in bidirectional reflectance distribution modeling, directional thermal emission modeling, comprehensive experiments, and the understanding of spatial and temporal scale effects in remote sensing information, and of quantitative inversions utilizing remote sensing data. In addition to his broad research activities, he was noted for his humility and his dedication in making science more accessible for the general public. Here, the life and academic contributions of Xiaowen Li to the field of quantitative remote sensing science are briefly reviewed.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2699 ◽  
Author(s):  
Jian Li ◽  
Liqiao Tian ◽  
Qingjun Song ◽  
Zhaohua Sun ◽  
Hongjing Yu ◽  
...  

Monitoring of water quality changes in highly dynamic inland lakes is frequently impeded by insufficient spatial and temporal coverage, for both field surveys and remote sensing methods. To track short-term variations of chlorophyll fluorescence and chlorophyll-a concentrations in Poyang Lake, the largest freshwater lake in China, high-frequency, in-situ, measurements were collected from two fixed stations. The K-mean clustering method was also applied to identify clusters with similar spatio-temporal variations, using remote sensing Chl-a data products from the MERIS satellite, taken from 2003 to 2012. Four lake area classes were obtained with distinct spatio-temporal patterns, two of which were selected for in situ measurement. Distinct daily periodic variations were observed, with peaks at approximately 3:00 PM and troughs at night or early morning. Short-term variations of chlorophyll fluorescence and Chl-a levels were revealed, with a maximum intra-diurnal ratio of 5.1 and inter-diurnal ratio of 7.4, respectively. Using geostatistical analysis, the temporal range of chlorophyll fluorescence and corresponding Chl-a variations was determined to be 9.6 h, which indicates that there is a temporal discrepancy between Chl-a variations and the sampling frequency of current satellite missions. An analysis of the optimal sampling strategies demonstrated that the influence of the sampling time on the mean Chl-a concentrations observed was higher than 25%, and the uncertainty of any single Terra/MODIS or Aqua/MODIS observation was approximately 15%. Therefore, sampling twice a day is essential to resolve Chl-a variations with a bias level of 10% or less. The results highlight short-term variations of critical water quality parameters in freshwater, and they help identify specific design requirements for geostationary earth observation missions, so that they can better address the challenges of monitoring complex coastal and inland environments around the world.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 3009 ◽  
Author(s):  
Shanshan Du ◽  
Liangyun Liu ◽  
Xinjie Liu ◽  
Jian Guo ◽  
Jiaochan Hu ◽  
...  

Solar-induced chlorophyll fluorescence (SIF) is regarded as a proxy for photosynthesis in terrestrial vegetation. Tower-based long-term observations of SIF are very important for gaining further insight into the ecosystem-specific seasonal dynamics of photosynthetic activity, including gross primary production (GPP). Here, we present the design and operation of the tower-based automated SIF measurement (SIFSpec) system. This system was developed with the aim of obtaining synchronous SIF observations and flux measurements across different terrestrial ecosystems, as well as to validate the increasing number of satellite SIF products using in situ measurements. Details of the system components, instrument installation, calibration, data collection, and processing are introduced. Atmospheric correction is also included in the data processing chain, which is important, but usually ignored for tower-based SIF measurements. Continuous measurements made across two growing cycles over maize at a Daman (DM) flux site (in Gansu province, China) demonstrate the reliable performance of SIF as an indicator for tracking the diurnal variations in photosynthetically active radiation (PAR) and seasonal variations in GPP. For the O2–A band in particular, a high correlation coefficient value of 0.81 is found between the SIF and seasonal variations of GPP. It is thus concluded that, in coordination with continuous eddy covariance (EC) flux measurements, automated and continuous SIF observations can provide a reliable approach for understanding the photosynthetic activity of the terrestrial ecosystem, and are also able to bridge the link between ground-based optical measurements and airborne or satellite remote sensing data.


Author(s):  
Y. Ni ◽  
G. He ◽  
W. Jiang

Cloud and Shadow removal is a significant step in remote sensing image process. As we all know, the ground object coverage type of the same area of the remote sensing image has little change in the short term. But for cloud and shadow coverage areas, the ground object coverage type has large change. Therefore, according to the difference between the two Landsat / OLI images caused by changes in the cover, this paper presents a method of extracting clouds and shadows based on differences in luminance values. This method selects two thresholds for the difference of brightness values, and extracts the clouds and shadows respectively, and validates them with random point method, which can obtain high precision of extracting cloud and shadow and satisfy the actual application needs.


2021 ◽  
Vol 13 (22) ◽  
pp. 4528
Author(s):  
Xin Yang ◽  
Lei Hu ◽  
Yongmei Zhang ◽  
Yunqing Li

Remote sensing image change detection (CD) is an important task in remote sensing image analysis and is essential for an accurate understanding of changes in the Earth’s surface. The technology of deep learning (DL) is becoming increasingly popular in solving CD tasks for remote sensing images. Most existing CD methods based on DL tend to use ordinary convolutional blocks to extract and compare remote sensing image features, which cannot fully extract the rich features of high-resolution (HR) remote sensing images. In addition, most of the existing methods lack robustness to pseudochange information processing. To overcome the above problems, in this article, we propose a new method, namely MRA-SNet, for CD in remote sensing images. Utilizing the UNet network as the basic network, the method uses the Siamese network to extract the features of bitemporal images in the encoder separately and perform the difference connection to better generate difference maps. Meanwhile, we replace the ordinary convolution blocks with Multi-Res blocks to extract spatial and spectral features of different scales in remote sensing images. Residual connections are used to extract additional detailed features. To better highlight the change region features and suppress the irrelevant region features, we introduced the Attention Gates module before the skip connection between the encoder and the decoder. Experimental results on a public dataset of remote sensing image CD show that our proposed method outperforms other state-of-the-art (SOTA) CD methods in terms of evaluation metrics and performance.


2017 ◽  
Vol 19 (1) ◽  
pp. 1
Author(s):  
Beny Harjadi

Work criteria and indicator of Catchments Area need to be determined because the success and the failure of cultivating Catchments Area can be monitored and evaluated through the determined criteria. Criteria Indicators in utilizing land, one of them is determined based on the erosion index and the ability of utilizing land, for analyzing the land critical level. However, the determination of identification and classification of land critical level has not been determined; as a result the measurement of how wide the real critical land is always changed all the year. In this study, it will be tried a formula to determine the land critical/eve/ with various criteria such as: Class KPL (Ability of Utilizing Land) and the difference of the erosion tolerance value with the great of the erosion compared with land critical level analysis using remote sensing devices. The aim of studying land critical level detection using remote sensing tool and Geographic Information System (SIG) are:1. The backwards and the advantages of critical and analysis method2. Remote Sensing Method for critical and classification3. Critical/and surveyed method in the field (SIG) Collecting and analyzing data can be found from the field survey and interpretation of satellite image visually and using computer. The collected data are analyzed as:a. Comparing the efficiency level and affectivity of collecting biophysical data through field survey, sky photo interpretation, and satellite image analysis.b. Comparing the efficiency level and affectivity of land critical level data that are found from the result of KPL with the result of the measurement of the erosion difference and erosion tolerance.


2021 ◽  
Vol 6 (1) ◽  
pp. 024-034
Author(s):  
Atriyon Julzarika ◽  
Harintaka Harintaka ◽  
Tatik Kartika

Vegetation height is an important parameter in monitoring peatlands. Vegetation height can be estimated using remote sensing. Vegetation height can be estimated by utilizing DSM and DTM. The data that can be used are LiDAR, X-SAR, and SRTM C. In this study, LiDAR data is used for DSM2018 and DTM2018 extraction. The purpose of this research is to detect the vegetation height in Central Kalimantan peatlands using remote sensing technology. The research location is in Bakengbongkei, Kalampangan, Central Kalimantan. The integration of X-SAR and SRTM C is used for DSM2000 and DTM2000 extraction. DSM2000, DTM2000, DSM2018, and DTM2018 performed height error correction with tolerance of 1.96? (95%). Then do the geoid undulation correction to EGM2008. The results obtained are DSM and DTM with a similar height reference field. If it meets these conditions it can be calculated the vegetation height estimation. Vegetation height can be obtained using the Differential DEM method. The Changing in vegetation height from 2000 to 2018 can be estimated from the difference in vegetation height from 2000 to vegetation height in 2018. Results of spatial information on vegetation height and its changes need to be tested for the accuracy. This accuracy-test includes a cross section test, height difference test, and comparison with measurements of vegetation height in the field. The results of this research can be used to monitor the changing the vegetation height in peatlands.


Sign in / Sign up

Export Citation Format

Share Document