scholarly journals SIFSpec: Measuring Solar-Induced Chlorophyll Fluorescence Observations for Remote Sensing of Photosynthesis

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 3009 ◽  
Author(s):  
Shanshan Du ◽  
Liangyun Liu ◽  
Xinjie Liu ◽  
Jian Guo ◽  
Jiaochan Hu ◽  
...  

Solar-induced chlorophyll fluorescence (SIF) is regarded as a proxy for photosynthesis in terrestrial vegetation. Tower-based long-term observations of SIF are very important for gaining further insight into the ecosystem-specific seasonal dynamics of photosynthetic activity, including gross primary production (GPP). Here, we present the design and operation of the tower-based automated SIF measurement (SIFSpec) system. This system was developed with the aim of obtaining synchronous SIF observations and flux measurements across different terrestrial ecosystems, as well as to validate the increasing number of satellite SIF products using in situ measurements. Details of the system components, instrument installation, calibration, data collection, and processing are introduced. Atmospheric correction is also included in the data processing chain, which is important, but usually ignored for tower-based SIF measurements. Continuous measurements made across two growing cycles over maize at a Daman (DM) flux site (in Gansu province, China) demonstrate the reliable performance of SIF as an indicator for tracking the diurnal variations in photosynthetically active radiation (PAR) and seasonal variations in GPP. For the O2–A band in particular, a high correlation coefficient value of 0.81 is found between the SIF and seasonal variations of GPP. It is thus concluded that, in coordination with continuous eddy covariance (EC) flux measurements, automated and continuous SIF observations can provide a reliable approach for understanding the photosynthetic activity of the terrestrial ecosystem, and are also able to bridge the link between ground-based optical measurements and airborne or satellite remote sensing data.

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zhaoying Zhang ◽  
Yongguang Zhang ◽  
Jing M. Chen ◽  
Weimin Ju ◽  
Mirco Migliavacca ◽  
...  

Remote sensing of solar-induced chlorophyll fluorescence (SIF) provides new possibilities to estimate terrestrial gross primary production (GPP). To mitigate the angular and canopy structural effects on original SIF observed by sensors (SIFobs), it is recommended to derive total canopy SIF emission (SIFtotal) of leaves within a canopy using canopy interception (i0) and reflectance of vegetation (RV). However, the effects of the uncertainties in i0 and RV on the estimation of SIFtotal have not been well understood. Here, we evaluated such effects on the estimation of GPP using the Soil-Canopy-Observation of Photosynthesis and the Energy balance (SCOPE) model. The SCOPE simulations showed that the R2 between GPP and SIFtotal was clearly higher than that between GPP and SIFobs and the differences in R2 (ΔR2) tend to decrease with the increasing levels of uncertainties in i0 and RV. The resultant ΔR2 decreased to zero when the uncertainty level in i0 and RV was ~30% for red band SIF (RSIF, 683 nm) and ~20% for far-red band SIF (FRSIF, 740 nm). In addition, as compared to the TROPOspheric Monitoring Instrument (TROPOMI) SIFobs at both red and far-red bands, SIFtotal derived using any combination of i0 (from MCD15, VNP15, and CGLS LAI products) and RV (from MCD34, MCD19, and VNP43 BRDF products) showed comparable improvements in estimating GPP. With this study, we suggest a way to advance our understanding in the estimation of a more physiological relevant SIF datasets (SIFtotal) using current satellite products.


2021 ◽  
Vol 13 (12) ◽  
pp. 2363
Author(s):  
Xiangfen Cheng ◽  
Yu Zhou ◽  
Meijun Hu ◽  
Feng Wang ◽  
Hui Huang ◽  
...  

Solar-induced chlorophyll fluorescence (SIF) is a hopeful indicator, which along with remote sensing, is used to measure the photosynthetic efficiency and gross primary production (GPP) of vegetation in regional terrestrial ecosystems. Studies have found a significant linear correlation between SIF and GPP in a variety of ecosystems. However, this relationship has mainly been established using SIF and GPP data derived from satellite remote sensing and continuous ground-based observations, respectively, which are difficult to accurately match. To overcome this, some studies have begun to use tower-based automatic observation instruments to study the changes of near-surface SIF and GPP. This study conducts continuous simultaneous observation of SIF, carbon flux, and meteorological factors on the forest canopy of a cork oak plantation during the growing season to explore how meteorological factors impact on canopy SIF and its relationship with GPP. This research found that the canopy SIF has obvious diurnal and day-to-day variations during the growing season but overall is relatively stable. Furthermore, SIF is greatly affected by incident radiation in different weather conditions and can change daily. Meteorological factors have a major role in the relationship between SIF and GPP; overall, the relationship shows a significant linear regression on the 30 min scale, but weakens when aggregating to the diurnal scale. Photosynthetically active radiation (PAR) drives SIF on a daily basis and changes the relationship between SIF and GPP on a seasonal timescale. As PAR increases, the daily slopes of the linear regressions between SIF and GPP decrease. On the 30 min timescale, both SIF and GPP increase with PAR until it reaches 1250 μmol·m−2·s−1; subsequently, SIF continues to increase while GPP decreases and they show opposite trends. Soil moisture and vapor pressure deficit influence SIF and GPP, respectively. Our findings demonstrate that meteorological factors affect the relationship between SIF and GPP, thereby enhancing the understanding of the mechanistic link between chlorophyll fluorescence and photosynthesis.


2015 ◽  
Vol 12 (14) ◽  
pp. 11891-11934 ◽  
Author(s):  
O. Perez-Priego ◽  
J. Guan ◽  
M. Rossini ◽  
F. Fava ◽  
T. Wutzler ◽  
...  

Abstract. This study investigates the performances of different optical indices to estimate gross primary production (GPP) of herbaceous stratum in a Mediterranean savanna with different Nitrogen (N) and Phosphorous (P) availability. Sun-induced chlorophyll Fluorescence yield computed at 760 nm (Fy760), scaled-photochemical reflectance index (sPRI), MERIS terrestrial-chlorophyll index (MTCI) and Normalized difference vegetation index (NDVI) were computed from near-surface field spectroscopy measurements collected using high spectral resolution spectrometers covering the visible near-infrared regions. GPP was measured using canopy-chambers on the same locations sampled by the spectrometers. We hypothesized that light-use efficiency (LUE) models driven by remote sensing quantities (RSM) can better track changes in GPP caused by nutrient supplies compared to those driven exclusively by meteorological data (MM). Particularly, we compared the performances of different RSM formulations – relying on the use of Fy760 or sPRI as proxy for LUE and NDVI or MTCI as fraction of absorbed photosynthetically active radiation (fAPAR) – with those of classical MM. Results showed significantly higher GPP in the N fertilized experimental plots during the growing period. These differences in GPP disappeared in the drying period when senescence effects masked out potential differences due to plant N content. Consequently, although MTCI was tightly related to plant N content (r2 = 0.86, p < 0.01), it was poorly related to GPP (r2 = 0.45, p < 0.05). On the contrary sPRI and Fy760 correlated well with GPP during the whole measurement period. Results revealed that the relationship between GPP and Fy760 is not unique across treatments but it is affected by N availability. Results from a cross validation analysis showed that MM (AICcv = 127, MEcv = 0.879) outperformed RSM (AICcv = 140, MEcv = 0.8737) when soil moisture was used to constrain the seasonal dynamic of LUE. However, residual analyses demonstrated that MM is predictively inaccurate whenever no climatic variable explicitly reveals nutrient-related changes in the LUE parameter. These results put forward that RSM is a valuable means to diagnose nutrient-induced effects on the photosynthetic activity.


2020 ◽  
Vol 12 (7) ◽  
pp. 1202 ◽  
Author(s):  
Antony Oswaldo Castro ◽  
Jia Chen ◽  
Christian S. Zang ◽  
Ankit Shekhar ◽  
Juan Carlos Jimenez ◽  
...  

Amazonian ecosystems are major biodiversity hotspots and carbon sinks that may lose species to extinction and become carbon sources due to extreme dry or warm conditions. We investigated the seasonal patterns of high-resolution solar-induced chlorophyll fluorescence (SIF) measured by the satellite Orbiting Carbon Observatory-2 (OCO-2) across the Amazonian ecoregions to assess the area´s phenology and extreme drought vulnerability. SIF is an indicator of the photosynthetic activity of chlorophyll molecules and is assumed to be directly related to gross primary production (GPP). We analyzed SIF variability in the Amazon basin during the period between September 2014 and December 2018. In particular, we focused on the SIF drought response under the extreme drought period during the strong El Niño in 2015–2016, as well as the 6-month drought peak period. During the drought´s peak months, the SIF decreased and increased with different intensities across the ecoregions of the Amazonian moist broadleaf forest (MBF) biome. Under a high temperature, a high vapor pressure deficit, and extreme drought conditions, the SIF presented differences from −31.1% to +17.6%. Such chlorophyll activity variations have been observed in plant-level measurements of active fluorescence in plants undergoing physiological responses to water or heat stress. Thus, it is plausible that the SIF variations in the ecoregions’ ecosystems occurred as a result of water and heat stress, and arguably because of drought-driven vegetation mortality and collateral effects in their species composition and community structures. The SIF responses to drought at the ecoregional scale indicate that there are different levels of resilience to drought across MBF ecosystems that the currently used climate- and biome-region scales do not capture. Finally, we identified monthly SIF values of 32 ecoregions, including non-MBF biomes, which may give the first insights into the photosynthetic activity dynamics of Amazonian ecoregions.


2015 ◽  
Vol 12 (21) ◽  
pp. 6351-6367 ◽  
Author(s):  
O. Perez-Priego ◽  
J. Guan ◽  
M. Rossini ◽  
F. Fava ◽  
T. Wutzler ◽  
...  

Abstract. This study investigates the performances of different optical indices to estimate gross primary production (GPP) of herbaceous stratum in a Mediterranean savanna with different nitrogen (N) and phosphorous (P) availability. Sun-induced chlorophyll fluorescence yield computed at 760 nm (Fy760), scaled photochemical reflectance index (sPRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI) were computed from near-surface field spectroscopy measurements collected using high spectral resolution spectrometers covering the visible near-infrared regions. GPP was measured using canopy chambers on the same locations sampled by the spectrometers. We tested whether light-use efficiency (LUE) models driven by remote-sensing quantities (RSMs) can better track changes in GPP caused by nutrient supplies compared to those driven exclusively by meteorological data (MM). Particularly, we compared the performances of different RSM formulations – relying on the use of Fy760 or sPRI as a proxy for LUE and NDVI or MTCI as a fraction of absorbed photosynthetically active radiation (fAPAR) – with those of classical MM. Results showed higher GPP in the N-fertilized experimental plots during the growing period. These differences in GPP disappeared in the drying period when senescence effects masked out potential differences due to plant N content. Consequently, although MTCI was closely related to the mean of plant N content across treatments (r2 = 0.86, p < 0.01), it was poorly related to GPP (r2 = 0.45, p < 0.05). On the contrary sPRI and Fy760 correlated well with GPP during the whole measurement period. Results revealed that the relationship between GPP and Fy760 is not unique across treatments, but it is affected by N availability. Results from a cross-validation analysis showed that MM (AICcv = 127, MEcv = 0.879) outperformed RSM (AICcv =140, MEcv = 0.8737) when soil moisture was used to constrain the seasonal dynamic of LUE. However, residual analyses demonstrated that GPP predictions with MM are inaccurate whenever no climatic variable explicitly reveals nutrient-related changes in the LUE parameter. These results suggest that RSM is a valuable means to diagnose nutrient-induced effects on the photosynthetic activity.


2019 ◽  
Vol 11 (22) ◽  
pp. 2642 ◽  
Author(s):  
Zhang ◽  
Zhang ◽  
Li ◽  
Wu ◽  
Zhang

During recent decades, solar-induced chlorophyll fluorescence (SIF) has shown to be a good proxy for gross primary production (GPP), promoting the development of ground-based SIF observation systems and supporting a greater understanding of the relationship between SIF and GPP. However, it is unclear whether such SIF-oriented observation systems built from different materials and of different configurations are able to acquire consistent SIF signals from the same target. In this study, we used four different observation systems to measure the same targets together in order to investigate whether SIF from different systems is comparable. Integration time (IT), reflectance, and SIF retrieved from different systems with hemispherical-conical (hemi-con) and bi-hemispherical (bi-hemi) configurations were also evaluated. A newly built prism system (SIFprism, using prism to collect both solar and target radiation) has the shortest IT and highest signal to noise ratio (SNR). Reflectance collected from the different systems showed small differences, and the diurnal patterns of both red and far-red SIF derived from different systems showed a marginal difference when measuring the homogeneous vegetation canopy (grassland). However, when the target is heterogeneous, e.g., the Epipremnum aureum canopy, the values and diurnal pattern of far-red SIF derived from systems with a bi-hemi configuration were obviously different with those derived from the system with hemi-con configuration. These results demonstrate that different SIF systems are able to acquire consistent SIF for landscapes with a homogeneous canopy. However, SIF retrieved from bi-hemi and hemi-con configurations may be distinctive when the target is a heterogeneous (or discontinuous) canopy due to the different fields of view and viewing geometries. Our findings suggest that the bi-hemi configuration has an advantage to measure heterogeneous canopies due to the large field of view for upwelling sensors being representative for the footprint of the eddy covariance flux measurements.


2020 ◽  
Vol 11 (2) ◽  
pp. 133-140
Author(s):  
Mohammad Imrul Islam ◽  
SM Ahsan Habib ◽  
SAM Arif Ul Haque ◽  
Nasrin Sultana ◽  
BM Refat Faisal ◽  
...  

Orbiting Carbon Observatory-2 (OCO-2) is a new satellite of measuring concentrations of carbon, can also provide comparatively higher resolution Solar Induced Chlorophyll Fluorescence (SIF) data which has the potential to directly estimate the photosynthetic activity or gross primary production (GPP). The aim of the present study is to investigate the feasibility of using OCO-2 derived SIF data for the estimation of photosynthetic activity in Bangladesh. To verify the OCO-2 derived SIF data, the present study analyzes the relationship between OCO-2 derived SIF and Moderate Resolution Imaging Spectroradiometer (MODIS) derived GPP for different land cover types for the year 2015 using individual day pixel-based analysis. The relationship between SIF and GPP is found to be good for the mixed vegetation for the data accessed on 01 January and 02 February of 2015 and for the evergreen forest for the data accessed on 14 September of 2015. In contrast, the relationship is not found strong between SIF and GPP for most of the cases. The pixel-based spatial dissimilarity between OCO-2 and MODIS, and spatial distortions of OCO-2 footprints might be the possible reason behind the poor correlation between SIF and GPP found in the present study. Unavailability of the homogeneous OCO-2 derived SIF data in terms of spatial and temporal context is another possible reason behind the weak relationship between SIF and GPP. The sparse spatial coverage and poor relationship to the MODIS derived GPP data declines the reliability of OCO-2 derived SIF data for the estimation of photosynthetic activity in Bangladesh or in other local scale application. Journal of Engineering Science 11(2), 2020, 133-140


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Quan Zhou ◽  
Xudong Zhang ◽  
Linfeng Yu ◽  
Lili Ren ◽  
Youqing Luo

Abstract Background Anoplophora glabripennis (Motschulsky), commonly known as Asian longhorned beetle (ALB), is a wood-boring insect that can cause lethal infestation to multiple borer leaf trees. In Gansu Province, northwest China, ALB has caused a large number of deaths of a local tree species Populus gansuensis. The damaged area belongs to Gobi desert where every single tree is artificially planted and is extremely difficult to cultivate. Therefore, the monitoring of the ALB infestation at the individual tree level in the landscape is necessary. Moreover, the determination of an abnormal phenotype that can be obtained directly from remote-sensing images to predict the damage degree can greatly reduce the cost of field investigation and management. Methods Multispectral WorldView-2 (WV-2) images and 5 tree physiological factors were collected as experimental materials. One-way ANOVA of the tree’s physiological factors helped in determining the phenotype to predict damage degrees. The original bands of WV-2 and derived vegetation indices were used as reference data to construct the dataset of a prediction model. Variance inflation factor and stepwise regression analyses were used to eliminate collinearity and redundancy. Finally, three machine learning algorithms, i.e., Random Forest (RF), Support Vector Machine (SVM), Classification And Regression Tree (CART), were applied and compared to find the best classifier for predicting the damage stage of individual P. gansuensis. Results The confusion matrix of RF achieved the highest overall classification accuracy (86.2%) and the highest Kappa index value (0.804), indicating the potential of using WV-2 imaging to accurately detect damage stages of individual trees. In addition, the canopy color was found to be positively correlated with P. gansuensis’ damage stages. Conclusions A novel method was developed by combining WV-2 and tree physiological index for semi-automatic classification of three damage stages of P. gansuensis infested with ALB. The canopy color was determined as an abnormal phenotype that could be directly assessed using remote-sensing images at the tree level to predict the damage degree. These tools are highly applicable for driving quick and effective measures to reduce damage to pure poplar forests in Gansu Province, China.


Sign in / Sign up

Export Citation Format

Share Document