Evaluation of Bond Strength of Steel Reinforcing Bars in Plain and Fiber-Reinforced Concrete

2002 ◽  
Vol 99 (4) ◽  

2019 ◽  
Vol 218 ◽  
pp. 176-192 ◽  
Author(s):  
Le Huang ◽  
Lihua Xu ◽  
Yin Chi ◽  
Fangqian Deng ◽  
Aoli Zhang


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Yujie Yuan ◽  
Ming Li ◽  
Abduqader S. S. Alquraishi ◽  
Hongye Sun

A novel method was proposed to improve the bond behavior of new-to-old concrete interface, which was beneficial to introduce the fiber-reinforced concrete only at the old concrete interface. This study investigated the effect of the fiber addition, strength grade of new concrete, interfacial angle, and surface treatment types on the bond behavior in terms of the new-to-old concrete through the axial tensile tests. The three-dimensional digital image correlation technique (3D-DIC) and scanning electron microscope were adopted to evaluate the variation of specimen surface strain distributions and microstructure of fiber-reinforced concrete and bond interface between new-to-old concrete. The experimental results indicated that interfacial angle and surface treatment type were significantly promoted bond behaviors, while the specimen cooperating with steel fibers had the highest bond strength. Besides, the maximum strain locations obtained from 3D-DIC method were the same as the location of the specimen failure, which indicated the 3D-DIC method can be adopted to forecast the structural failure. The microcrack strain located in the major crack was decreased with the development of the major crack. Ample crystals and Ca(OH)2 were generated in the interface between the new-to-old concrete to weaken the bond strength. Moreover, this paper provided the mechanics-driven and machine learning method to predict the bond strength. This study provides a new interface bonding method for the fabricated and large span structure to effectively avoid cracking of new-to-old concrete.





2014 ◽  
Vol 513-517 ◽  
pp. 134-137
Author(s):  
Yan Xia Ye ◽  
Long Hai Qin ◽  
Tao Liu ◽  
Xiang Yang Sun

A series of pseudo-static tests were conducted with 4 coupling beams whose span-depth ratio 1.2. Common reinforced concrete and PVA fiber reinforced concrete were used for different specimens. In each of the specimens, there were longitudinal reinforcement, constructional reinforcement and stirrup, one of the specimens had crossed reinforcing bars. The failure mode of the coupling beams were studied, as well as hysteretic behavior. The test result indicated that using PVA fiber reinforced concrete could improve coupling beams carrying capacity, and could also reduce the amount of stirrup needed for seismic calculation; PVA members ductility was also improved.



2001 ◽  
Vol 28 (5) ◽  
pp. 787-793 ◽  
Author(s):  
Rami H Haddad ◽  
Ahmed M Ashteyate

An experimental study was conducted to investigate the bond behavior between corroding reinforcing steel and surrounding synthetic fiber reinforced concrete. Pullout concrete and fiber reinforced concrete specimens were prepared at concrete cover to steel bar diameter ratios of 3.1 and 3.7 with three embedded lengths of 100, 200, and 300 mm. Fiber reinforced concrete was prepared using polypropylene at 0.15% and 0.30% or nylon fibers at 0.3% by mix volume. After moist curing for 90 days, pullout specimens, originally contaminated by up to 11 kg/m3 NaCl, were subjected to a special treatment to accelerate corrosion in steel. The bond stress–slippage relationship was evaluated at different corrosion levels. The findings indicated that the use of fibers delayed initiation of cracking, due to steel corrosion, and improved the ultimate bond strength at cracking and post-cracking stages. The percentage improvement in ultimate bond strength at the latter stages reached as high as 52% and 87%, respectively. It was noticed that, prior to cracking, corrosion of steel bars resulted in an increase in bond strength, regardless of the concrete cover to bar diameter ratio used, or whether fibers were used or not. After cracking (due to steel corrosion), pullout specimens prepared with polypropylene fibers showed better resistance than that of corresponding ones with nylon fibers.Key words: fibers, reinforced concrete, corrosion, cracking, bond strength, slippage.



Sign in / Sign up

Export Citation Format

Share Document