Self-Healing Characterization of Engineered Cementitious Composite Materials

2010 ◽  
Vol 107 (6) ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 700
Author(s):  
Irene A. Kanellopoulou ◽  
Ioannis A. Kartsonakis ◽  
Costas A. Charitidis

Cementitious structures have prevailed worldwide and are expected to exhibit further growth in the future. Nevertheless, cement cracking is an issue that needs to be addressed in order to enhance structure durability and sustainability especially when exposed to aggressive environments. The purpose of this work was to examine the impact of the Superabsorbent Polymers (SAPs) incorporation into cementitious composite materials (mortars) with respect to their structure (hybrid structure consisting of organic core—inorganic shell) and evaluate the microstructure and self-healing properties of the obtained mortars. The applied SAPs were tailored to maintain their functionality in the cementitious environment. Control and mortar/SAPs specimens with two different SAPs concentrations (1 and 2% bwoc) were molded and their mechanical properties were determined according to EN 196-1, while their microstructure and self-healing behavior were evaluated via microCT. Compressive strength, a key property for mortars, which often degrades with SAPs incorporation, in this work, practically remained intact for all specimens. This is coherent with the porosity reduction and the narrower range of pore size distribution for the mortar/SAPs specimens as determined via microCT. Moreover, the self-healing behavior of mortar-SAPs specimens was enhanced up to 60% compared to control specimens. Conclusively, the overall SAPs functionality in cementitious-based materials was optimized.


Tran-SET 2020 ◽  
2021 ◽  
Author(s):  
Ricardo Hungria ◽  
Gabriel Arce ◽  
Marwa Hassan ◽  
Tyson Rupnow ◽  
Moinul Mahdi ◽  
...  

2016 ◽  
Vol 860 ◽  
pp. 125-134 ◽  
Author(s):  
Abla Krouma ◽  
Zubair Imam Syed

Engineered Cementitious Composite (ECC) is a material with high ductility, tensile strength and self-healing more than the standard concrete. Applications of ECC are beneficial due to its long life cycle, high strength, low cost in the long-term, low maintenance and environmentally friendly nature. Properties and hardened behavior of ECC highlights that ECC has a tight crack width development, which increases its ability to resist long-term effects of hot, frost and humid weather. Additionally, it results low water permeability coefficient and high steel corrosion resistance compared to other common alternative materials. One of the promising areas of application for ECC is in highway structures, especially highway bridges. Highway structures suffer constantly from adverse environmental loads and often require frequent repairing or replacing due to cracks; expansion; water and chlorides effects which cause steel corrosion or the slope between the pavement, slab and the support at the end of a bridge. Detailed review on different properties and characteristics of ECC and the current applications of ECC clearly highlights the motivation to enhance the use of ECC for bridge construction. In addition, ECC can be introduced in jointless bridges by putting an ECC link slab instead of the expandable mechanical joint.


Sign in / Sign up

Export Citation Format

Share Document