scholarly journals SCINDA-GPS derived TEC depletions and amplitude scintillations over Kisumu, Kenya during selected quiet and storm days of 2013 and 2014

2020 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Uluma Edward ◽  
Ndinya Boniface ◽  
Omondi George

Total Electron Content (TEC) depletion and amplitude scintillation (S4) can be derived from, SCINDA-GPS receivers situated in various parts of the equatorial region. In this paper we present results of characterization of TEC depletions and amplitude scintillations over Kisumu, Kenya (Geomagnetic coordinates: 9.64o S, 108.59o E; Geographic coordinates: 0.02o S, 34.6o E) for both selected geomagnetically quiet and geomagnetically disturbed conditions between 1st January 2013 and 31st December 2014 using data derived from the Kisumu NovAtel GSV4004B SCINDA-GPS receiver situated at Maseno University. TEC depletions and amplitude scintillations affect Global Positioning System (GPS) signals in the ionosphere as they propagate from the satellite to the receiver. This study aims to investigate day to day variability of TEC depletions and amplitude scintillations over Kisumu, Kenya during both geomagnetically quiet and geomagnetically disturbed days of 2013 and 2014 which was a high solar activity period for Solar Cycle 24. Seasonal variability of TEC depletions and S4 index is also presented. The Receiver Independent Exchange (RINEX) data for the years 2013 and 2014 was retrieved from the Kisumu SCINDA-GPS receiver, processed to obtain Vertical Total Electron Content (VTEC), S4 and Universal Time (UT) and fed into MATLAB to generate VTEC and S4 plots against UT for each selected quiet and storm day within the 2013 and 2014 period. The obtained results showed a diurnal variation of TEC where TEC was minimum at pre-sunrise, maximum during daytime and minimum during nighttime. The minimum TEC during pre-sunrise and nighttime was attributed to reduced solar intensity while maximum TEC during daytime is attributed to increased solar intensity. Most of the selected quiet and storm days of the years 2013 and 2014 showed TEC depletions and TEC enhancements corresponding with enhanced amplitude scintillations between 1800UT and 20:00UT. This might be attributed to the rapid rise of the F-layer and the increase in the vertical E x B plasma drift due to the Pre-reversal Enhancement (PRE) of the eastward electric field. Post-midnight TEC depletions and amplitude scintillations were observed for some days and this was attributed to the effect of zonal winds which brought post-midnight enhancement of the E x B drift. The percentage occurrence of amplitude scintillations for the selected quiet and storm days exhibited a seasonal dependence with equinoctial months having higher occurrences than the solstitial months. The higher average S4 index during equinoctial months might be attributed to increased solar intensity resulting from the close alignment of the solar terminator and the geomagnetic meridian.  

2011 ◽  
Vol 29 (5) ◽  
pp. 865-873 ◽  
Author(s):  
M. P. Natali ◽  
A. Meza

Abstract. Annual, semiannual and seasonal variations of the Vertical Total Electron Content (VTEC) have been investigated during high solar activity in 2000. In this work we use Global IGS VTEC maps and Principal Component Analysis to study spatial and temporal ionospheric variability. The behavior of VTEC variations at two-hour periods, at noon and at night is analyzed. Particular characteristics associated with each period and the geomagnetic regions are highlighted. The variations at night are smaller than those obtained at noon. At noon it is possible to see patterns of the seasonal variation at high latitude, and patterns of the semiannual anomaly at low latitudes with a slow decrease towards mid latitudes. At night there is no evidence of seasonal or annual anomaly for any region, but it was possible to see the semiannual anomaly at low latitudes with a sudden decrease towards mid latitudes. In general, the semiannual behavior shows March–April equinox at least 40 % higher than September one. Similarities and differences are analyzed also with regard to the same analysis done for a period of low solar activity.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1243
Author(s):  
Nouf Abd Elmunim ◽  
Mardina Abdullah ◽  
Siti Aminah Bahari

Total electron content (TEC) is an important parameter in the ionosphere that is extensively used to study the variability of the ionosphere as it significantly affects radio wave propagations, causing delays on GPS signals. Therefore, evaluating the performance of ionospheric models is crucial to reveal the variety of ionospheric behaviour in different solar activity periods during geomagnetically quiet and disturbed periods for further improvements of the IRI model performance over the equatorial region. This research aimed to investigate the variations of ionospheric VTEC and observe the improvement in the performance of the IRI-2016 (IRI-2001, IRI01-corr, and NeQuick). The IRI-2016 was evaluated with the IRI-2012 using NeQuick, IRI-2001, and IRI01-corr topside electron density options. The data were obtained using a dual-frequency GPS receiver installed at the Universiti Utara Malaysia Kedah (UUMK) (geographic coordinates 4.62° N–103.21° E, geomagnetic coordinates 5.64° N–174.98° E), Mukhtafibillah (MUKH) (geographic coordinates 6.46° N–100.50° E, geomagnetic coordinates 3.32° S–172.99° E), and Tanjung Pengerang (TGPG) (geographic coordinates 1.36° N–104.10°E, geomagnetic coordinates 8.43° S–176.53° E) stations, during ascending to high solar activity at the geomagnetically quiet and disturbed periods in October 2011, March 2012, and March 2013. The maximum hourly ionospheric VTEC was observed during the post-noon time, while the minimum was during the early morning time. The ionospheric VTEC modelled by IRI-2016 had a slight improvement from the IRI-2012. However, the differences were observed during the post-noon and night-time, while the modelled VTEC from both IRI models were almost similar during the early morning time. Regarding the daily quiet and disturbed period’s prediction capability of the IRI-2016 and IRI-2012, IRI-2016 gave better agreement with the measured VTEC. The overall results showed that the model’s prediction performance during the high solar activity period in 2013 was better than the one during the ascending solar activity period. The results of the comparison between IRI-2016 and IRI-2012 in high solar activity exhibited that during quiet periods, all the IRI models showed better agreement with the measured VTEC compared to the disturbed periods.


2007 ◽  
Vol 25 (12) ◽  
pp. 2609-2614 ◽  
Author(s):  
T. Maruyama

Abstract. A regional reference model of total electron content (TEC) was constructed using data from the GPS Earth Observation Network (GEONET), which consists of more than 1000 Global Positioning System (GPS) satellite receivers distributed over Japan. The data covered almost one solar activity period from April 1997 to June 2007. First, TECs were determined for 32 grid points, expanding from 27 to 45° N in latitude and from 127 to 145° E in longitude at 15-min intervals. Secondly, the time-latitude variation averaged over three days was determined by using the surface harmonic functional expansion. The coefficients of the expansion were then modeled by using a neural network technique with input parameters of the season (day of the year) and solar activity (F10.7 index and sunspot number). Thus, two-dimensional TEC maps (time vs. latitude) can be obtained for any given set of solar activity and day of the year.


2013 ◽  
Vol 5 (2) ◽  
pp. 255-264 ◽  
Author(s):  
P. Bhawre ◽  
A. K. Gwal ◽  
A. A. Mansoori ◽  
P. A. Khan

In the present study we have investigated the monthly and seasonal variability of total electron content (TEC) and amplitude scintillation index (S4) over two Indian polar stations Maitri (Antarctic) and Ny-Alesund (Arctic), during the low solar activity period 2008. We have used the Novatel’s dual frequency GPS receiver GSV4004A to accomplish this study. From our analysis we observed that TEC achieves its highest values during the months of November and December while during the month of May and June the lowest values of TEC were recorded at Maitri station. Similarly during summer season the highest values of TEC are recorded while in winter season lowest values of TEC are observed. The scintillations that occurred during the year 2008 at Maitri as well as at Ny-Alesund were generally found to be of weak type (S4?0.1), although few cases of moderate (S4?0.3) and strong (S4?0.5) scintillation were also observed. The occurrence characteristics of scintillations showed that maximum scintillations at Maitri occur during the month of July and August while least scintillations occur during the month of January and February. This type of ionospheric variability can be explained on the basis of solar irradiance at Polar Regions.Keywords: Total electron content; Scintillation index; Polar ionosphere.© 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi: http://dx.doi.org/10.3329/jsr.v5i2.12724        J. Sci. Res. 5 (2), 255-264 (2013)


2017 ◽  
Vol 21 (6) ◽  
pp. 1599-1612 ◽  
Author(s):  
Weiping Jiang ◽  
Yifang Ma ◽  
Xiaohui Zhou ◽  
Zhao Li ◽  
Xiangdong An ◽  
...  

2018 ◽  
Author(s):  
Mostafa Rabah ◽  
Ahmed Sedeek

Abstract. Global ionosphere maps (GIM) are generated on a daily basis at CODE using data from about 400 GPS/GLONASS sites of the IGS and other institutions. The vertical total electron content (VTEC) is modeled in a solar-geomagnetic reference frame using a Spherical Harmonics Expansion “SHE” up to degree and order 15. To cover the holes of the first GIM computation stage existing in the North Africa and over the Oceans resulting a shortage of GNSS station in North Africa, an optimum spatial-temporal interpolation technique was developed to cover these holes (Krankowski and Hernandez-Pajares, 2016). The current paper evaluates the ionospheric correction by Global Ionospheric Maps, GIM, provided in (IONEX) files produced by International GNSS Services “IGS”. The evaluation is performed based on investigating the effect of a given GIM ionospheric correction on kinematic relative positioning solutions. The evaluation was done using several baselines of different lengths in Egypt. The results show that there is no significant effect of the provided GIM values on the solution of kinematic processing. The results confirm that although there is a lack of International GNSS Service (IGS stations) over North Africa, GIMs have no effect in mitigating ionospheric error. A new value for the ionosphere correction VTEC values was obtained by a regional, developed algorithm based on zero-differenced phase ionospheric delay (ZDPID) (Tawfeek et al., 2018). These new values of VTEC were fed into GIMs for the specified stations data. A useful result was obtained for correcting the ionospheric error over kinematic solution of many baseline lengths up to 300 km which demonstrates validity of the proposed evaluation method.


2020 ◽  
Vol 12 (11) ◽  
pp. 1822
Author(s):  
Eren Erdogan ◽  
Michael Schmidt ◽  
Andreas Goss ◽  
Barbara Görres ◽  
Florian Seitz

The Kalman filter (KF) is widely applied in (ultra) rapid and (near) real-time ionosphere modeling to meet the demand on ionosphere products required in many applications extending from navigation and positioning to monitoring space weather events and naturals disasters. The requirement of a prior definition of the stochastic models attached to the measurements and the dynamic models of the KF is a drawback associated with its standard implementation since model uncertainties can exhibit temporal variations or the time span of a given test data set would not be large enough. Adaptive methods can mitigate these problems by tuning the stochastic model parameters during the filter run-time. Accordingly, one of the primary objectives of our study is to apply an adaptive KF based on variance component estimation to compute the global Vertical Total Electron Content (VTEC) of the ionosphere by assimilating different ionospheric GNSS measurements. Secondly, the derived VTEC representation is based on a series expansion in terms of compactly supported B-spline functions. We highlight the morphological similarity of the spatial distributions and the magnitudes between VTEC values and the corresponding estimated B-spline coefficients. This similarity allows for deducing physical interpretations from the coefficients. In this context, an empirical adaptive model to account for the dynamic model uncertainties, representing the temporal variations of VTEC errors, is developed in this work according to the structure of B-spline coefficients. For the validation, the differential slant total electron content (dSTEC) analysis and a comparison with Jason-2/3 altimetry data are performed. Assessments show that the quality of the VTEC products derived by the presented algorithm is in good agreement, or even more accurate, with the products provided by IGS ionosphere analysis centers within the selected periods in 2015 and 2017. Furthermore, we show that the presented approach can be applied to different ionosphere conditions ranging from very high to low solar activity without concerning time-variable model uncertainties, including measurement error and process noise of the KF because the associated covariance matrices are computed in a self-adaptive manner during run-time.


Sign in / Sign up

Export Citation Format

Share Document