scholarly journals Enhancing e-banking security: using whirlpool hash function for card number encryption

2018 ◽  
Vol 7 (2.13) ◽  
pp. 281
Author(s):  
Doaa Yaseen Khudhur ◽  
Saif Saad Hameed ◽  
Shokhan M. Al-Barzinji

The Internet played - and still - the key that continuously changing our ways of interaction with people. As a result, several electronic services had emerged allowing businesses to grow by effectively allowing wide and easy interaction with customers and other businesses. The security and privacy of information over the internet in general and in electronic services providers have been the focus of widely published studies and researches, such that several software and hardware based solutions or hybrid of both is required. E-banking services grown significantly in the last decade where all financial matters of customers and businesses can be done online, and therefore, e-banking security and privacy is important. In this paper, I propose the use of Whirlpool hash function to enhance the security of e-bank service providers by encrypting customer’s card sensitive information. In addition, based on the review of several articles, I found that Whirlpool outperformed several hashing functions and resists several well-known attacks.  

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2984 ◽  
Author(s):  
Admir Kaknjo ◽  
Muzaffar Rao ◽  
Edin Omerdic ◽  
Thomas Newe ◽  
Daniel Toal

With the growth of the internet of things (IoT), many challenges like information security and privacy, interoperability/standard, and regulatory and legal issues are arising. This work focused on the information security issue, which is one of the primary challenges faced by connected systems that needs to be resolved without impairing system behaviour. Information, which is made available on the Internet by the things, varies from insensitive information (e.g., readings from outdoor temperature sensors) to extremely sensitive information (e.g., video stream from a camera) and needs to be secured over the Internet. Things which utilise cameras as a source of information pertain to a subclass of the IoT called IoVT (internet of video things). This paper presents secured and unsecured video latency measurement results over the Internet for a marine ROV (remotely operated vehicle). A LabVIEW field programmable gate arrays (FPGAs)-based bump-in-the-wire (BITW) secure core is used to provide an AES (advanced encryption standard)-enabled security feature on the video stream of an IoVT node (ROV equipped with a live-feed camera). The designed LabVIEW-based software architecture provides an option to enable/disable the AES encryption for the video transmission. The latency effects of embedding encryption on the stream with real-time constraints are measured and presented. It is found that the encryption mechanism used does not greatly influence the video feedback performance of the observed IoVT node, which is critical for real-time secure video communication for ROV remote control and piloting. The video latency measurement results are taken using 128, 256 and 512 bytes block lengths of AES for both H.264 and MJPEG encoding schemes transmitted over both TCP and UDP transmission protocols. The latency measurement is performed in two scenarios (i.e., with matching equipment and different equipment on either end of the transmission).


2010 ◽  
pp. 834-842
Author(s):  
Chi Po Cheong

Credit card is the most popular payment method used in Internet shopping. The idea of credit card payment is to buy first and pay later. The cardholder can pay at the end of the statement cycle or they can pay interest on the outstanding balance. Therefore, there are many credit card-based electronic payment systems (EPSs) that have been developed to facilitate the purchase of goods and services over the Internet such as CyberCash (VeriSign), iKP (Bellare, Garary, Hauser, et al, 1995), SET (Visa and MasterCard, 1997), CCT (Li & Zhange, 2004), and so forth. Usually a credit card-based EPS involves five parties: cardholder, merchant, acquirer bank, issuer bank, and financial institution. Internet is an open system and the communication path between each other is insecure. All communications are potentially open for an eavesdropper to read and modify as they pass between the communicating endpoints. Therefore, the payment information transmitted between the cardholder and the merchant through Internet is dangerous without a secure path. SSL (Zeus Technology, 2000) is a good example to secure the communication channel. Besides the issue of insecure communication, there are a number of factors that each participant must consider. For example, merchant concerns about whether the credit card or the cardholder is genuine. There is no way to know the consumer is a genuine cardholder. As a result, the merchant is incurring the increase in losses due to cardholder disputes and frauds. On the other hand, cardholders are worried about the theft of the privacy or sensitive information such as the credit card number. They don’t want any unauthorized usage of their credit cards and any modification to the transaction amount by a third party. These security issues have deterred many potential consumers from purchasing online. Existing credit card-based EPSs solve the problems in many different ways. Some of them use cryptography mechanisms to protect private information. However, they are very complicated, expensive, and tedious (Xianhau, Yuen, Ling, & Lim, 2001). Some EPSs use the Certificate Authority (CA) model to fulfill the authentication, integrity, and nonrepudiation security schemes. However, each participant requires a digital certificate during the payment cycle. These certificates are issued by independent CAs but the implementation and maintenance cost of this model is very high. In addition, the validation steps of Certificate-based systems are very time-consuming processes. It requires access to an online certificate server during the payment process. Moreover, the certificate revocation list is a major disadvantage of the PKI-based certification model (The Internet Engineering Task Force). The cardholder’s certificate also includes some private information such as the cardholder’s name. The requirement of a cardholder’s certificate means software such as e-Wallet is required to be installed on the cardholder’s computer. It is the barrier for the cardholder to use Certificatebased payment systems. To solve this problem, Visa Company has developed a new payment system called Verified by Visa (VbV) (http:www/visa-asia.com/ ap/sea/merchants/productstech/vbv_implementvbv. shtml). However, sensitive information such as credit card number is still passed to the merchant. Therefore, the cardholder is not protected by the system.


Author(s):  
Xhafer Krasniqi

The Internet of Things that is defined as anything that can be accessible anytime and anywhere provides connectivity to different objects and sensors around us and which will enable the transfer of different data between these objects and devices. A thing in the Internet of Things can be any natural or man-made object that can be assigned an IP address with a capability to exchange date over a network. There is a huge number of applications of IoT to benefit users, such as health monitors, smart homes, connected cars etc. If everything around us is connected and information about these things that can contain sensitive information, e.g. health and other personal information, are collected then these networks become very important and must be able to provide a proper security and privacy. It is believed that by 2020 there will be over 50 billion things that could be connected to Internet. Internet of things are very much associated with M2M (machine to machine communication) that is identified as a technology that makes objects smart, like smart homes, smart utility meters etc. M2M actually is considered to be a subset of IoT and which is mainly used for difficult and dangerous tasks, e.g. nuclear plants, etc. The deployment of IoT has already started and is expected to transform the way we live. According to Gartner, a technology research company, the Internet of Things has just reached the deployment stage by early adopters and the full deployment is expected in over ten years. From an industry angle, this paper will examine the market and technical trends of Internet of Things, main applications that will be supported by this technology, key issues and challenges faced by the industry, standards activities around IoT and finally the implementation landscape.


Marketing ◽  
2021 ◽  
Vol 52 (2) ◽  
pp. 83-94
Author(s):  
Semir Vehapi ◽  
Ahmedin Lekpek ◽  
Zenaida Šabotić

This paper analyzes the satisfaction of bank clients with the internet banking services in the Republic of Serbia. The aim of the research is to measure the actual level of satisfaction of the domestic banks clients with the internet banking services and to determine the connection between satisfaction and internet banking and its main determinants. The research was conducted through a questionnaire, and 193 respondents took part. The obtained answers were processed using descriptive static analysis, reliability analysis of research variables, correlation analysis, and multivariate regression analysis. By analyzing the relevant literature, efficiency, safety and privacy, accessibility, response and costs were determined as independent variables, while satisfaction was used as a dependent variable. The research results show that the strongest influence on the bank clients satisfaction has the efficiency factor, followed by the response, security, and privacy, while accessibility and costs do not have a statistically significant impact on the internet banking users satisfaction.


Author(s):  
Chi Po Cheong

Credit card is the most popular payment method used in Internet shopping. The idea of credit card payment is to buy first and pay later. The cardholder can pay at the end of the statement cycle or they can pay interest on the outstanding balance. Therefore, there are many credit card-based electronic payment systems (EPSs) that have been developed to facilitate the purchase of goods and services over the Internet such as CyberCash (VeriSign), iKP (Bellare, Garary, Hauser, et al, 1995), SET (Visa and MasterCard, 1997), CCT (Li & Zhange, 2004), and so forth. Usually a credit card-based EPS involves five parties: cardholder, merchant, acquirer bank, issuer bank, and financial institution. Internet is an open system and the communication path between each other is insecure. All communications are potentially open for an eavesdropper to read and modify as they pass between the communicating endpoints. Therefore, the payment information transmitted between the cardholder and the merchant through Internet is dangerous without a secure path. SSL (Zeus Technology, 2000) is a good example to secure the communication channel. Besides the issue of insecure communication, there are a number of factors that each participant must consider. For example, merchant concerns about whether the credit card or the cardholder is genuine. There is no way to know the consumer is a genuine cardholder. As a result, the merchant is incurring the increase in losses due to cardholder disputes and frauds. On the other hand, cardholders are worried about the theft of the privacy or sensitive information such as the credit card number. They don’t want any unauthorized usage of their credit cards and any modification to the transaction amount by a third party. These security issues have deterred many potential consumers from purchasing online. Existing credit card-based EPSs solve the problems in many different ways. Some of them use cryptography mechanisms to protect private information. However, they are very complicated, expensive, and tedious (Xianhau, Yuen, Ling, & Lim, 2001). Some EPSs use the Certificate Authority (CA) model to fulfill the authentication, integrity, and nonrepudiation security schemes. However, each participant requires a digital certificate during the payment cycle. These certificates are issued by independent CAs but the implementation and maintenance cost of this model is very high. In addition, the validation steps of Certificate-based systems are very time-consuming processes. It requires access to an online certificate server during the payment process. Moreover, the certificate revocation list is a major disadvantage of the PKI-based certification model (The Internet Engineering Task Force). The cardholder’s certificate also includes some private information such as the cardholder’s name. The requirement of a cardholder’s certificate means software such as e-Wallet is required to be installed on the cardholder’s computer. It is the barrier for the cardholder to use Certificatebased payment systems. To solve this problem, Visa Company has developed a new payment system called Verified by Visa (VbV) (http:www/visa-asia.com/ ap/sea/merchants/productstech/vbv_implementvbv. shtml). However, sensitive information such as credit card number is still passed to the merchant. Therefore, the cardholder is not protected by the system.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 252 ◽  
Author(s):  
Huaizhe Zhou ◽  
Haihe Ba ◽  
Yongjun Wang ◽  
Zhiying Wang ◽  
Jun Ma ◽  
...  

The dramatic proliferation of cloud computing makes it an attractive target for malicious attacks. Increasing solutions resort to virtual machine introspection (VMI) to deal with security issues in the cloud environment. However, the existing works are not feasible to support tenants to customize individual security services based on their security requirements flexibly. Additionally, adoption of VMI-based security solutions makes tenants at the risk of exposing sensitive information to attackers. To alleviate the security and privacy anxieties of tenants, we present SECLOUD, a framework for monitoring VMs in the cloud for security analysis in this paper. By extending VMI techniques, SECLOUD provides remote tenants or their authorized security service providers with flexible interfaces for monitoring runtime information of guest virtual machines (VMs) in a non-intrusive manner. The proposed framework enhances effectiveness of monitoring by taking advantages of architectural symmetry of cloud environment. Moreover, we harden our framework with a privacy-preserving capacity for tenants. The flexibility and effectiveness of SECLOUD is demonstrated through a prototype implementation based on Xen hypervisor, which results in acceptable performance overhead.


Author(s):  
Van Nguyen ◽  
Derek Mohammed ◽  
Marwan Omar ◽  
Mubarak Banisakher

The repeal of net neutrality has caused a great public outcry from academic down to the end-users. Net neutrality was an FCC order that specified the principles for Internet Service Providers. The most prevalent principles were related to bandwidth throttling, preferential treatments, and privacy. Some described the action of the FCC will lead to the end of the Internet and consumer privacy. There have been many articles discussing about the fallout of the ruling, but it is difficult filtering fact from fiction. In this article, the authors discuss the nature of net neutrality, the history, the arguments for and against, and the roles of the FCC and their many orders. They also layout the implication of repeal on security and privacy. They present a few scenarios specifying what an ISP can do and cannot do. Finally, the authors specify what laws the consumers have left for their privacy.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5237 ◽  
Author(s):  
Qikun Zhang ◽  
Yongjiao Li Zhigang Li ◽  
Junling Yuan ◽  
Yong Gan ◽  
Xiangyang Luo

The development of the Internet of Things has led to great development of data sharing and data interaction, which has made security and privacy more and more a concern for users. How to ensure the safe sharing of data, avoid the leakage of sensitive information, and protect the privacy of users is a serious challenge. Access control is an important issue to ensure the trust of the Internet of Things. This paper proposes an access control scheme based on ciphertext attribute authentication and threshold policy, which uses the identity authentication of hidden attributes and divides the user’s permission grade by setting the threshold function with the user’s attributes. Users obtain different permission grades according to attribute authentication and access data of different sensitivity grades to achieve fine-grained, flexible and secure access to data in the cloud server while protecting personal privacy issues. In addition, when the resource is acquired, the identity and permission joint authentication method is adopted to avoid the collusion attack of the illegal member, which makes the resource access control more secure.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3146 ◽  
Author(s):  
Xiao Chun Yin ◽  
Zeng Guang Liu ◽  
Bruce Ndibanje ◽  
Lewis Nkenyereye ◽  
S. M. Riazul Islam

In the age of the Internet of Things, connected devices are changing the delivery system in the healthcare communication environment. With the integration of IoT in healthcare, there is a huge potential for improvement of the quality, safety, and efficiency of health care in addition to promising technological, economical, and social prospects. Nevertheless, this integration comes with security risks such as data breach that might be caused by credential-stealing malware. In addition, the patient valuable data can be disclosed when the perspective devices are compromised since they are connected to the internet. Hence, security has become an essential part of today’s computing world regarding the ubiquitous nature of the IoT entities in general and IoT-based healthcare in particular. In this paper, research on the algorithm for anonymizing sensitive information about health data set exchanged in the IoT environment using a wireless communication system has been presented. To preserve the security and privacy, during the data session from the users interacting online, the algorithm defines records that cannot be revealed by providing protection to user’s privacy. Moreover, the proposed algorithm includes a secure encryption process that enables health data anonymity. Furthermore, we have provided an analysis using mathematical functions to valid the algorithm’s anonymity function. The results show that the anonymization algorithm guarantees safety features for the considered IoT system applied in context of the healthcare communication systems.


Author(s):  
Nestor J. Zaluzec

The Information SuperHighway, Email, The Internet, FTP, BBS, Modems, : all buzz words which are becoming more and more routine in our daily life. Confusing terminology? Hopefully it won't be in a few minutes, all you need is to have a handle on a few basic concepts and terms and you will be on-line with the rest of the "telecommunication experts". These terms all refer to some type or aspect of tools associated with a range of computer-based communication software and hardware. They are in fact far less complex than the instruments we use on a day to day basis as microscopist's and microanalyst's. The key is for each of us to know what each is and how to make use of the wealth of information which they can make available to us for the asking. Basically all of these items relate to mechanisms and protocols by which we as scientists can easily exchange information rapidly and efficiently to colleagues in the office down the hall, or half-way around the world using computers and various communications media. The purpose of this tutorial/paper is to outline and demonstrate the basic ideas of some of the major information systems available to all of us today. For the sake of simplicity we will break this presentation down into two distinct (but as we shall see later connected) areas: telecommunications over conventional phone lines, and telecommunications by computer networks. Live tutorial/demonstrations of both procedures will be presented in the Computer Workshop/Software Exchange during the course of the meeting.


Sign in / Sign up

Export Citation Format

Share Document