scholarly journals An improved harmony search algorithm for optimized link state routing protocol in vehicular ad hoc network

2018 ◽  
Vol 7 (2.14) ◽  
pp. 177
Author(s):  
Mustafa Raad Hammoodi ◽  
Ravie Chandren Muniyand

Vehicle Ad-hoc Network (VANET) is a direct application of Mobile Ad-hoc Network (MANET). Nodes in VANET are vehicles that communicate using vehicle to vehicle (V2V) or vehicle to infrastructure (V2I). These types of communications have led to the emergence of various applications that provide safer driving. Due to the high changing of topology and frequent fragmentation of VANET, routing pack-ets in this type of network is a hard task. In this work, the authors deal with the well-known MANET proactive Optimized Link State Rout-ing protocol (OLSR). The deployment of OLSR in VANET gives the moderate performance; this is due to its necessity of constant ex-changing of control packets. The performance of OLSR is highly dependent on its parameters, thus finding optimal parameters configura-tions that best fit VANETs environment and improves the network is essential before its deployment. Therefore, this research proposes a modified Harmony Search optimization (HSO) by incorporating selection methods in its memory consideration; roulette wheel selection to obtain fine-tuned OLSR for high density and velocity scenario. The experimental analysis showed that the OLSR with the proposed ap-proach acquired promising results regarding packet delivery ratio, end-to-end delay and overhead when compared with previous approaches.  

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ravie Chandren Muniyandi ◽  
Mohammad Kamrul Hasan ◽  
Mustafa Raad Hammoodi ◽  
Ali Maroosi

Vehicular ad-hoc network (VANET) is the direct application of mobile ad-hoc network (MANET) in which the nodes represent vehicles moving in a city or highway scenario. The deployment of VANET relies on routing protocols to transmit the information between the nodes. Different routing protocols that have been designed for MANET were proposed to be applied in VANET. However, the real-time implementation is still facing challenges to fulfill the quality of service (QoS) of VANET. Therefore, this study mainly focuses on the well-known MANET proactive optimized link state routing (OLSR) protocol. The OLSR in VANET gives a moderate performance; this is due to its necessity of maintaining an updated routing table for all possible routes. The performance of OLSR is highly dependent on its parameter. Thus, finding optimal parameter configurations that best fit VANET features and improve its quality of services is essential before its deployment. The harmony search (HS) is an emerging metaheuristic optimization algorithm with features of simplicity and exploration efficiency. Therefore, this paper aims to propose an improved harmony search optimization (EHSO) algorithm that considers the configuration of the OLSR parameters by coupling two stages, a procedure for optimization carried out by the EHSO algorithm based on embedding two popular selection methods in its memory, namely, roulette wheel selection and tournament selection. The experimental analysis shows that the proposed approach has achieved the QoS requirement, compared to the existing algorithms.


Author(s):  
Safaa Laqtib ◽  
Khalid El Yassini ◽  
Moulay Lahcen Hasnaoui

<p>Mobile Ad Hoc Network (MANET) consists of a group of mobile or wireless nodes that are placed randomly and dynamically that causes the continual change between nodes. A mobility model attempts to mimic the movement of real mobile nodes that change the speed and direction with time. The mobility model that accurately represents the characteristics of the mobile nodes in an ad hoc network is the key to examine whether a given protocol. The aim of this paper is to compare the performance of four different mobility models (i.e. Random Waypoint, Random Direction, Random walk, and Steady-State Random Waypoint) in MANET. These models were configured with Optimized Link State Routing (OLSR) protocol under three QoS (Quality of Service) <a title="Learn more about Metrics" href="https://www.sciencedirect.com/topics/engineering/metrics">metrics</a> such as the Packet Delivery Ratio (PDR), Throughput, End-to-End delay. The simulation results show the effectiveness of Steady-State Random Waypoint Mobility Models and encourage further investigations to extend it in order to guarantee other QoS requirements.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Kebebew Ababu Yitayih ◽  
Mulugeta Libsie

Creating dynamic communication infrastructures between mobile devices and satisfying the desires for time-sensitive multimedia applications have introduced new challenges in the design of protocols for mobile ad hoc networks. In this paper, to stream time-sensitive applications using mobile ad hoc network (MANET), we have selected the Optimal Link State Routing (OLSR) protocol. However, the protocol has high overhead because each node selects a set of multipoint relay (MPR) nodes. Therefore, we have proposed quality of service (QoS) supporting the MPR selection approach and a new lower maintenance clustering approach for minimizing the overhead of the network. As a result, the proposed approach showed a better result in the average end-to-end delay, packet delivery ratio, routing load, and throughput.


Author(s):  
Erwin Erwin ◽  
Saparudin Saparudin ◽  
Wulandari Saputri

This paper proposes a new method for image segmentation is hybrid multilevel thresholding and improved harmony search algorithm. Improved harmony search algorithm which is a method for finding vector solutions by increasing its accuracy. The proposed method looks for a random candidate solution, then its quality is evaluated through the Otsu objective function. Furthermore, the operator continues to evolve the solution candidate circuit until the optimal solution is found. The dataset used in this study is the retina dataset, tongue, lenna, baboon, and cameraman. The experimental results show that this method produces the high performance as seen from peak signal-to-noise ratio analysis (PNSR). The PNSR result for retinal image averaged 40.342 dB while for the average tongue image 35.340 dB. For lenna, baboon and cameramen produce an average of 33.781 dB, 33.499 dB, and 34.869 dB. Furthermore, the process of object recognition and identification is expected to use this method to produce a high degree of accuracy.


2009 ◽  
Vol 95 (4) ◽  
pp. 401-426 ◽  
Author(s):  
Prithwish Chakraborty, ◽  
Gourab Ghosh Roy ◽  
Swagatam Das ◽  
Dhaval Jain ◽  
Ajith Abraham

Sign in / Sign up

Export Citation Format

Share Document