scholarly journals Single Stage Boost Integrated High-Frequency Full Bridge Inverter for Induction Heating System

2018 ◽  
Vol 7 (2.24) ◽  
pp. 63
Author(s):  
Arul Prakash Jayachandran ◽  
Booma Nagarajan ◽  
R Akshaya ◽  
Mabel Jemima A ◽  
Asaipriyan S

This paper proposes a new single-stage boost high frequency ac series resonant power inverter for high frequency induction heating (IH) applications. The proposed ac-ac converter consist of a single stage boost (SSB) converter and full-bridge ac series resonant inverter integrated circuit with a ac source voltage control strategy by controlling the inverter switches. The Simulink model is developed using MATLAB simulation software and the simulated results are examined. The output power is maintained to the required level by using phase shift control strategy and the simulated results are validated.  

2016 ◽  
Vol 65 (4) ◽  
pp. 827-841
Author(s):  
Palash Pal ◽  
Debabrata Roy ◽  
Avik Datta ◽  
Pradip K. Sadhu ◽  
Atanu Banerjee

Abstract This paper presents a mathematical model of a power controller for a high-frequency induction heating system based on a modified half-bridge series resonant inverter. The output real power is precise over the heating coil, and this real power is processed as a feedback signal that contends a closed-loop topology with a proportional-integral-derivative controller. This technique enables both control of the closed-loop power and determination of the stability of the high-frequency inverter. Unlike the topologies of existing power controllers, the proposed topology enables direct control of the real power of the high-frequency inverter.


Author(s):  
M. Saravanan ◽  
A. Ramesh Babu

Induction heating application uses uniquely high frequency series resonant inverter for achieving high conversion efficiency. The proposed work focus on improving the practical constraints in requiring the cooling arrangements necessary for switching devices used in resonant inverter due to higher switching and conduction losses. By introducing high frequency Multi- MOSFET based series resonant inverter for the application of induction heating with the following merits such as minimum switching and conduction losses using low voltage grade  of automotive MOSFET’s and higher conversion efficiency with high frequency operation. By adding series combination of low voltage ratedMulti MOSFET switches, temperature variation according to the on-state resistance issues can be avoided by sharing the voltage across the switches depends on number switches connected in the bridge circuit without comprising existing system performance parameter such as THD, power factor, output power. Simulation results also presents to verify that the proposed system achieve higher converter efficiency.


2013 ◽  
Vol 772 ◽  
pp. 443-447
Author(s):  
Yi Wang Wang

The inverter power supply system has strong nonlinearity and parameter variability, especially in the non-linear loads, conventional control technology is difficult to achieve effective control and get the ideal control effect. Aiming at the control requirements of single-phase high-frequency induction heating inverter supply power control applications, uses a novel multiple and composite control technologies to achieve rapid power modulation control of inverter. The components and design principles of proposed control system were introduced in detail. The inverter power system model based on the new control strategy has been built, and inverter prototype used for high-frequency induction heating was designed. The experimental results show that the proposed control method to obtain better dynamic characteristics than the conventional control technologies, and has good advantages of system steady-state accuracy, robustness and control qualities, which has wide range of application.


2003 ◽  
Vol 38 (9) ◽  
pp. 592-599
Author(s):  
Daichi Yoshida ◽  
Hiroyasu Kifune ◽  
Yoshihiro Hatanaka ◽  
Takao Takase ◽  
Masahiro Komatsu

Sign in / Sign up

Export Citation Format

Share Document